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Abstract

Understanding the underlying popularity of items or ability of players from ranked data is a
fundamental task in many fields such as computer science, economics, education research or sports
analytics. This article proposes a dynamic model of ranked data for the rating estimation problem.
Different from the existing methods, the proposed model can handle both the player-level and the
team-level data, where multiple players can belong to the same team. Relying on the Polya-Gamma
augmentation, I develop an efficient Gibbs sampler to estimate parameters of the model. The pro-
posed model is applied to estimate the dynamic rating of Formula One drivers and racing teams from
1984 to 2019. I find that driver’s career pattern differs even among top drivers and that disparities
between teams have increased dramatically over the last decade.

Keywords: Formula One, Plackett-Luce model, ranked data, rating estimation

1 Introduction

The ranked-ordered data (or simply ranked data) arises whenever multiple items, players or students
are sorted multiple times by sales, matches, or test scores. Understanding the latent features of such
ranked items is a fundamental task in many fields such as political science (Gormley and Murphy, 2008),
marketing (Bradlow and Fader, 2001), economics (Njenga, Onuonga and Sichei, 2018), or sports analytics
(Murray, 2017). Specifically, the canonical Bradley-Terry model and its generalization (Plackett-Luce
model) have been extensively used for estimating the rating in horse-racing (Plackett, 1975), car-racing
(Hunter, 2004) and book-ranking (Caron and Teh, 2012), among others.

One of the common features in such ranked data is dynamics: Varying sets of players compete with
each other over time. Motivated by a rating estimation problem of Formula One drivers and teams, where
multiple teams and their players compete at a set of races each year, I develop a dynamic rating model of
ranked data. The proposed model extends the standard Plackett-Luce (PL) model so that it allows for
players to change their rating over time, and enables comparisons between players that do not directly
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match up. I show that by log-transforming the original parameters in the PL model and introducing a
set of indicator variables, the PL models can be represented as a multinomial logistic model with varying
choice sets (e.g., Yamamoto, 2014).

The new multinomial formulation has several attractive features over the existing parametrization.
First, we remove the positivity constraint of the model parameters. This is especially helpful when con-
ducting a Bayesian inference, as constraints in the parameter space often lead to slower mixing. Second,
extensions become simpler since we can rely on the vast literature on the multinomial logistic regression.
For example, including match-level or item-level covariates to the rating model is now straightforward
under the proposed parametrization. Finally, we can use the data augmentation strategy developed for
the binomial likelihood to derive an efficient estimation algorithm (e.g., Polson, Scott and Windle, 2013;
Linderman, Johnson and Adams, 2015). In Section 2.3, I develop a Gibbs sampler for the proposed
dynamic rating model.

The proposed model is applied to the ranking data of drives and teams in Formula One racing since
1984. The naive application of the static model will pool the entire data and ignores the dynamical
changes in driver’s or team’s rating. As any Formula One observer can attest, assuming the constant
rating for racing teams (or drivers) is not appropriate as teams are under constant pressure from other
competitors to improve their cars. The result shows that even among top drivers, the career path is
quite different, thought there are several common patterns. Some drivers retire from the racing right
after they reach their career peak (in terms of their rating), while some drives peak multiple times in
their career. The analysis of the team ranking reveals that compared to a decade ago, teams are less
competitive except for a few top teams, though there seems to be some improvements among mid-tier
team in the 2019 season.

This paper is organized as follows. In the next section, I briefly review the canonical model for ranked
data in a static setting. Section 2 describes the proposed dynamic model and its extension. Section 3
presents the empirical application of the proposed method to the Formula One data. Finally, I offer some
concluding remarks in Section 4.

1.1 A Review of Models for Ranked Data

The original model for ranked data is developed for estimating ratings based on pair-wise competitions
between players. Suppose that we observe a match between player i and player i′. The canonical Bradley-
Terry model for the pair-wise competition is given by

Pr(i beats i′) = ηi
ηi + ηi′

where the parameter ηi > 0 captures the latent “ability” or “popularity” of player i. Many algorithms
have been proposed in the literature (see Hunter, 2004, and papers cited). Recently, Murray (2017)
utilizes the re-parametrized version of the above model with λi = log(ηi), such that it can be expressed
in a logistic form.

Pr(i beats i′) = exp(λi − λi′)

1 + exp(λi − λi′)
.

Murray (2017) then derives a Gibbs sampler based on the Polya-Gamma data augmentation (Polson,
Scott and Windle, 2013).
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The Plackett-Luce model generalizes the Bradley-Terry model to the multi-player setting where we
observe a ranking of n players. Let ρ = (ρ1, . . . , ρn) denote a ranking of players where ρk ∈ {1, . . . , n}
indicates a player that ranks k in a match.

Pr(ρ) =

n∏
k=1

ηρk∑n
k′=k ηρk′

The standard strategy is to place a Gamma prior on ηi and proceed with a Bayesian estimation. Caron
and Doucet (2012) proposed a Gibbs sampler based on a novel latent variable formulation that exploits
the properties of the exponential distribution. Virtanen and Girolami (2020) and Caron and Teh (2012)
extend the formulation to the dynamic setting. Although the latent variable formulation based on the
exponential distribution is elegant, it makes the extension of the model non-trivial. For example, Virtanen
and Girolami (2020) uses a dynamic Gamma process to model the dynamic rating, but it is not clear
how we can extend to model to other settings.

Instead, I show that the Plackett-Luce model can be casted as a Multinomial logistic model with
varying choice sets. Although the formal treatment is given in the next section, we can preview the
result in a simpler setting. Let λi denote a log transformation of ηi such that ηi = exp(λi). By the
transformation, we eliminate the positivity constraint on ηi so that λi ∈ R. By substituting exp(λi) for
ηi, we have

Pr(ρ) =

n∏
k=1

exp(λρk
)∑n

k′=k exp(λρk′ )

where again λi ∈ R. Furthermore, the denominator term can be written as
∑n

k′=k exp(λρk′ ) =
∑n

i=1 δik exp(λi)

where δik is an indicator variable that take 1 if unit i is ranked kth or below. We can see that this trans-
formation turn the PL model into a product of n multinomial distributions.

2 The Proposed Methodology

2.1 Setup

We observe a ranking of nmt ≤ N players at match m ∈ {1, . . . ,M} in year t ∈ {1, . . . , T}. For simplicity
we assume that the number of matches are constant each year, so we observe in total MT ranked sets.
Let ρmt = (ρmt1, . . . , ρmt,nmt

)⊤ denote the ranking of players. In my application, ρmtk indicates a driver
that finished kth in race m in year t.

We are interested in estimating the latent ability (or “rating”) of N players. Let λ(t)i denote the ith
player’s ability at time t. Here, I assume that player’s rating is time-varying. Although sometimes it
is possible that the player’s ability itself does not vary much over time, the rating should reflect other
factors that affect player’s performance. For example, in many sports, changing a team often affects
player’s performance. Therefore, it is appropriate to assume that player’s rating is time-varying. It is
also clear that the time-varying formulation encompasses the time-constant model as a special case.

In many applications, players’ career is shorter than the entire sample periods observed in the data.
Since we are only interested in estimating the rating over the active career periods of player i, we define
λ
(t)
i for t = T i, . . . , T i where T i and T i denote the first and the last season, respectively.
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2.2 Model

The dynamic Plackett-Luce models is defined on the observed ranking ρmt.

Pr(ρmt) =

nmt∏
k=1

exp(λ
(t)
ρmtk)∑nmt

k′=k exp(λ
(t)
ρmtk′ )

(1)

where I use the re-parametrized verion of the PL model discussed in the previous section.

Proposition 1 (Multinomial Logit Representation of PLM). Let δimtk = 1
{∑nmt

k′=k 1{ρmtk′ = i} = 1
}

denote an indicator variable that takes 1 if player i is ranked kth or lower in matche m and time t. Then,
the PL model in Equation (1) is reexpressed as

Pr(ρmt) =

nmt∏
k=1

N∏
i=1

{
exp(λ

(t)
i )∑N

i′=1 δi′mtk exp(λ
(t)
i′ )

}1{ρmtk=i}

.

Proof. The result follows from a simple algebra. The derivation is omitted.

Proposition 1 says that the standard PL model after the re-parametrization can be written as the
multinomial logit model with varying choice sets. The indicator variable δimtk controls the available set
of choice items in match m, time t and rank k. This multinomial representation allows us to utilize
wide machineries developed for the multinomial logit model and enables scholars to extend the PL model
flexibly.

I propose a conditional sampling strategy that condition on other players’ ability. It is certainly
possible to derive a Gibbs sampler that samples the entire parameters at once, based the recent result
on the Polya-Gamma augmentation for the multinomials (Linderman, Johnson and Adams, 2015), I
choose the conditional approach as it is simpler to derive and implement in practice. for the multinomial
distribution, which allows for estimating λ

(t)
i jointly for all i, Conditional on other players’ ability, we

can write the above multinomial formula as the standard logistic form,

nmt∏
k=1

N∏
i=1

{
exp(λ

(t)
i )∑N

i′=1 δi′mtk exp(λ
(t)
i′ )

}Yimtk

=

nmt∏
k=1

N∏
i=1

{
exp(λ

(t)
i )

exp(λ
(t)
i ) +

∑
i′ ̸=i δi′mtk exp(λ

(t)
i′ )

}Yimtk

=

nmt∏
k=1

N∏
i=1

exp(λ
(t)
i − log cimtk)

Yimtk

1 + exp(λ
(t)
i − log cimtk)

where cimtk =
∑

i′ ̸=i δi′mtk exp(λ
(t)
i′ ) and Yimtk = 1{ρmtk = i}. Therefore, the contribution of unit i to

the likelihood is given by

M∏
m=1

T∏
t=1

nmt∏
k=1

{
exp(λ̃

(t)
i )Yimtk

1 + exp(λ̃
(t)
i )

}δimtk

∝
M∏

m=1

T∏
t=1

nmt∏
k=1

{
exp(κimtkλ̃

(t)
i )

∫ ∞

0

exp(−ωimkt(λ̃
(t)
i )2/2)p(ωimtk)dωimtk

}δimtk

where ω ∼ PG(1, 0) and the right-hand side is due to Theorem 1 of Polson, Scott and Windle (2013).
Notice that the function inside of the exponential is quadratic in λ

(t)
i . Thus, the normal prior will be
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conjugate for λ parameter, which is different from the standard PL formulation that requires Gamma
prior on the ability parameter.

Finally, we assume that the player’s ability λ(t)i follows the random-walk,

λ
(t)
i ∼ N (λ

(t−1)
i ,∆2

i )

and the initial condition is assumed to be λ(0)i ∼ N (m0, s
2
0). This formulation assume that the rating

λ
(t)
i moves smoothly conditional on one’s ability in the previous period. The innovation term ∆2

i controls
how variable λ(t)i can be between time points.

2.3 Estimation

In this section, I develop a Gibbs sample for the dynamic Plackett-Luce model proposed in the previous
section. I utilize the Polya-Gamma augmentation scheme for the logistic likelihood (Polson, Scott and
Windle, 2013). As shown in the previous section, we arrive at the logistic likelihood from the multinomial
representation by conditioning on other players’ rating parameter λ−i ≡ {λi′}i′ ̸=i. The following Gibbs
sampler exploits this structure and estimate one player’s rating conditining on λ−i.

Data augmentation Compute cimk =
∑

i′ ̸=i δi′mtk exp(λ
(t)
i′ ). Augment ωimtk as follows

ωimtk ∼ Polya-Gamma(1, ψimtk)

where ψimkt = λ
(t)
i − log cimtk. Note that we need to augment ωimtk only when δimtk = 1.

Sampling the rating parameter I sample {λ(t)i }T i

t=T i
via the forward-filtering and backward sampling

(FFBS) algorithm (Frühwirth-Schnatter, 1994). To arrive at the FFBS algorithm, we first realize that
the conditional posterior is given by the form

p({λ(t)i }T i

t=T i
| ωi,ρi, δi,λ−i) ∝ p({λ(t)i }T i

t=T i
)

T i∏
t=T i

exp

{
−

M∑
m=1

nmt∑
k=1

δimtk
ωimtk

2

(
zimtk − λ

(t)
i

)2
}

where zimtk = κimtk/ωimtk + log cimtk with κimtk = 1{ρmtk = i} − 1/2. Following the strategy proposed
by Windle et al. (2013), we can rewrite the above as the dynamic linear model,

zit ∼ N (λ
(t)
i 1t,Ωit), λ

(t)
i ∼ N (λ

(t−1)
i ,∆2

i )

where zit is a vector of {zimtk} and Ωit = diag{ωimtk}.

• Forward filtering: We compute the filtering density for λ(t)i , p(λ(t) | zi,1:t), which is a Gaussian
with mean µt|t and variance σ2

t|t, λ
(t)
i ∼ N (µt|t, σ

2
t|t). The moments are computed as follows: for

the mean, we have
µt|t = σ2

t (1
⊤
t Ω

−1
it zit + µt|t−1/σ

2
t|t−1)

5



where µt|t−1 = µt−1 and σ2
t|t−1 = σ2

t−1 +∆2
i . The variance σ2

t|t is given by

σ−2
t|t = 1⊤

t Ω
−1
it 1t + σ−2

t|t−1

The initial condition is given by λ(0)i ∼ N (m0, s
2
0).

• Backward sampling: We compute p(λ(t)i | λ(t+1)
i , zi,1:t) for t = T, . . . , 1 which is also a Gaussian

with mean µt|T and variance σ2
t|T . The updated moments are given by

µt|T = (1− at)µt|t + at+1λ
(t+1)
i , and σ2

t|T = (1− at)σ
2
t|t

where at = σ2
t|t/(σ

2
t|t +∆). The sequence is initialize by µT |T and σ2

T |T .

Given this, we sample λ(t)i by λ(t)i ∼ N (µt|T , σ
2
t|T ).

For identification, I fixed one player’s first-year rating λ(1)1 = 0.

2.4 Extension: Estimating Team’s Ability

In this section, I extend the proposed dynamic Plackett-Luce model for scaling teams. Let Gi ∈ {1, . . . , J}
denote player i’s team association. Then, the ranking outcome at the team level at match m and time
t is given by πmt = Gρmt

. Here, πmtk ∈ [J ] indicates a team that ranked kth at match m and time
t. Note that this construction allows for the possibility that multiple players belong to the same team.
For example, in my application of Formula One racing, each team has two racing drivers competing in a
single race. This implies that when Gρmtk

= Gρmtk′ for k ̸= k′, we have that πmtk = πmtk′ .
Let α(t)

j ∈ R denote the rating for team j at time t. To account for the possibility that a team might
appear multiple times in a ranking πmt, I extend the model in the following form:

Pr(πmt) =

nmt∏
k=1

exp(α
(t)
πmtk)∑J

j=1 δ̃jmtk exp(α
(t)
j )

where δ̃jmtk = 1
{
max{argmaxk′1{πmtk′ = j}} ≤ k

}
. The difference from the previous construction of

the model is the introduction of a new indicator variable δ̃jmtk. This variable properly accounts for the
varying choice set, so that even if team j is selected, the team will not be immediately removed from the
choice set as in the previous construction,

To gain an intuition how this indicator is constructed, consider a simple example where two teams
with two players each competes in a match. Suppose that we observe π = {1, 2, 2, 1}, which indicates
that the players in the first team rank first and fourth, while the players in the second team rank second
and third. In this example, we have δ̃1,k = 1 for k = 1, . . . , 4 because {1, 4} = argmink′1{πk′ = 1}
and 4 = max{1, 4}. This example demonstrates that different from the model presented in the previous
section, this model “allows” the first team to stay in the choice set, after being “picked” in the first choice.

After introducing the new indicator δ̃, the estimation is done identically as described in Section 2.3.
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3 Empirical Application: Estimating the Rating of F1 Drivers

In this section, I apply the proposed dynamic Plackett-Luce model for the Formula One racing results to
estimate drivers’ (Section 3.2) and teams’ rating (Section 3.3). I demonstrate that the proposed method
can discover different career paths for top players, and enables comparisons between retired and current
drivers or between past and current teams.

3.1 Background and Data Collection

Formula One is “the highest class of international single-seater auto racing” (Wikipedia). In each year,
around 20 races take place internationally. In recent years, about 10 teams participate in the championship
and each team have two main drivers, though the format varied in the past. Each race (called “Grand
Prix”) consists of the qualifying session, where drivers compete based on their lap times to determine
the grid positions, and the main session, which is competed based on the fixed number of laps. This
article focus on the ranking in the main session. Each driver and team is awarded points after each race
reflecting their ranking in the race, and those who scores the most points at the end of the season wins
the driver’s and constructor’s championship, respectively.

I collect all the Formula One Grand Prix (GP) results from a website (f1-fansite.com) through 1984
– a year that Ayrton Senna made his first appearance – to 2019. The data contains information about
the final ranking of each driver and the driver’s associated team at each GP. The data contains 14,694
unique observations where the average tenure of a team is 10.3 years and the average tenure of a driver
is 5.8 years. There are a few teams that are observed throughout the sample periods such as Ferrari
and McLaren, but no driver stayed in Formula One for the entire periods (the longest tenure is Michael
Schumacher’s 22 years). On average, a driver completes 48.6 races in their career.

There are several types of missingness in the outcome (i.e., ranking). The ranking is missing for a
driver when a particular year is outside of the career period, that is, t /∈ [T i, T i]. In addition, the ranking
goes missing when a driver does not finish the race (DNF). This can happen for a variety of reasons
such as a crash during the race or a retirement due to a mechanical failure. Obviously some of them
are random, but it is also true that DNF reflects the driver’s (or the team’s) ability. Lastly, the driver
(or the team) can be disqualified from a race. This can be due to a violation of technical regulations.
In the following application, I treat them as “missing,” ignoring differences in missing mechanisms for
simplicity. A model that incorporates these features is left for the future work.

3.2 Estimating Drivers’ Rating

I apply the proposed dynamic Plackett-Luce model to the driver ranking data. For the identification,
I set the rating of Timo Glock’s first year (2004) as zero. The initial condition of the rating is drawn
from ψ

(0)
i ∼ N (0, 0.5). I set the innovation term of the dynamic linear model as ∆2

i = ∆2 = 0.5, which
assumes that the rating is relatively smooth over time and does not dramatically varies. For the stability
of the estimation, I dropped drivers whose results are missing more than 90% of their entries. This leaves
me 190 unique drivers over 35 years of the Formula One history.

Figure 1 shows the estimated dynamic ratings for 14 world champions. Estimates for other drivers
are presented in Appendix A. Estimates are obtained by running the Gibbs sampler for 4000 iterations
in addition to the 1000 burin-in periods. I keep every 5th MCMC sample to reduce the auto-correlation
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between samples. Solid lines in the figure show the posterior median, while gray areas show the 95%
credible intervals based on the posterior quantile. When a driver is absent from the Formula One racing
during his career, I show the interpolated values during the absence (e.g., Schumacher was absent between
2007 and 2009).

NIKI LAUDA SEBASTIAN VETTEL

MICHAEL SCHUMACHER MIKA HÄKKINEN NICO ROSBERG NIGEL MANSELL

JACQUES VILLENEUVE JENSON BUTTON KIMI RÄIKKÖNEN LEWIS HAMILTON

ALAIN PROST AYRTON SENNA DAMON HILL FERNANDO ALONSO
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Figure 1: Estimated Ratings for World Champions (1984–2019). Solid lines are posterior medians and
shaded areas are 95% credible intervals based on the posterior quantile. Orance circles indicate the year
of the championship. The rating is relative to Timo Glock’s first year (2004) which is fixed to zero
for identification. Missing years are interpolated via predicted values (e.g., Schumacher: 2007–09, and
Räikkönen: 2010–11).

Figure 1 shows a variation of career path across drivers. Some drives have a unimodal rating where
they peak once in their career (e.g., Damon Hill or Nigel Mansell). Other drives such as Jenson Button
and Fernando Alonso show a bimodal career path, while drives such as Nico Rosberg or Mika Häkkinen
retire from the Formula One racing right after they reach the career peak.

Figure 2 shows the rating estimates of the top 25 drivers based on their highest rating in the career.
Rating estimates for the world champions are shown in orange. We can see that world champions are
clustered around the top drivers, though we see some drivers such as Mark Webber (2011) or Max
Verstappen (2019) ranked higher than some of the world champions. I should note that these findings
are not possible without a dynamic model where the comparison across time is possible. A static model
or simple methods such as counting the number of wins do not admit across-year comparisons due to the
differences in driver pools (i.e., who you are competing against is not fixed). The top ranked driver is
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Lewis Hamilton (2015). In 2015 championship, Hamilton won 10 out of 19 GPs (11 pole positions) and
became the world champion of the year.

FELIPE MASSA (2007)

EDDIE IRVINE (1999)

JUAN PABLO MONTOYA (2002)

RALF SCHUMACHER (2001)

NIKI LAUDA (1984)

AYRTON SENNA (1991)

JACQUES VILLENEUVE (1997)

CHARLES LECLERC (2019)

ALAIN PROST (1988)

DAMON HILL (1995)

RUBENS BARRICHELLO (2002)

DAVID COULTHARD (2000)

MAX VERSTAPPEN (2019)

KIMI RÄIKKÖNEN (2017)

JENSON BUTTON (2011)

MIKA HÄKKINEN (1999)

DANIEL RICCIARDO (2017)

FERNANDO ALONSO (2012)

MARK WEBBER (2011)

VALTTERI BOTTAS (2019)

NIGEL MANSELL (1992)

MICHAEL SCHUMACHER (2001)

NICO ROSBERG (2016)

SEBASTIAN VETTEL (2011)

LEWIS HAMILTON (2015)

2 3 4 5 6
Rating

Career Peak Rating

Top 25 Drivers (1984-2019)

Figure 2: Estimated Rating with 95% Credible Intervals. Drivers are sorted based on the value of
the posterior median. The estimates are based on the entire years, but the peak season is selected for
presentation. Drivers in orange (triangle) are world champions (the peak year is not necessarily the
championship year).

Finally, I emphasize that the rating estimates are not the pure reflection of driver’s ability to drive.
The performance in a race highly depends on the team’s ability to develop a faster car and provide
an accurate strategy. Thus, the rating should be interpreted as a score that incorporates many factors
that affect the driver’s standing in the championship. In fact, sudden shifts in a driver’s rating are often
associated with his move to another team. For example, in Figure 1, Kimi Räikkönen’s rating plummeted
in 2019. This possibly reflects his move from Ferrari to Alfa Romeo (Sauber) in 2019, where the latter
team is not as competitive as Ferrari.

3.3 Estimating Teams’ Rating

I apply the extension of the dynamic Plackett-Luce model discussed in Section 2.4 to the team ranking
data. I dropped several teams that do not have sufficient number of race finishes. I also combine several
teams that are considered to be a direct predecessor or successor. This creates a team that has a longer
tenure in the Formula One racing, which helps improve the stability of estimation. For example, I
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combined Sauber, BMW Sauber and Alfa Romeo into a single team. To preserve the interpretability,
however, I merge the current team with the previous team only when the number of observations is too
few. This means that even though I combine BAR, Honda and Brawn into a single team, Mercedes is
treated as a different team. Among the current teams, Racing Point is combined with Force India, in
addition to Alfa Romeo’s merge with Sauber. Haas is left as is because the predecessor is unclear. This
operation leaves me 46 unique teams between 1984 and 2019.

Initial conditions are set as in the driver’s rating estimation, and I set ∆2
i = ∆2 = 0.5 for the

innovation in the rating. The Gibbs sampler is run for 4000 iterations in addition to the 1000 burin
iterations. I keep MCMC samples for every 5th iteration after the burin period.

Figure 3 shows the estimates of the dynamic rating of current constructors. Other estimates are
available in Appendix B. The figure shows that some of the current teams show the downward trend
since mid 2000’s, while top tier teams such as Mercedes, Red Bull or Ferrari do not seem to exhibit such
trends. This might imply that the current racing environment is less competitive than what it was 15
years ago as the disparities between teams increase over years. The highest point in the last decade was
scored by Mercedes in 2015. As discussed in the drivers’ rating section, this year saw Lewis Hamilton,
one of the two Mercedes’ drivers, winning the world championship. In fact, Mercedes dominated the
entire GPs of the year; together with another team mate Nico Rosberg, Mercedes won 16 out of the 19
races.

Red Bull Renault / Lotus F1 Sauber / Alfa Romeo Toro Rosso Williams

Ferrari Force India / Racing Point Haas McLaren Mercedes

1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020
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Figure 3: Dynamic Rating Estimates for the Current Formula One Teams. Estimates are based on the
entire teams in the data (1984–2019), but current teams are presented in the figure. The rating is relative
to the first year of Super Aguri (2006), which is fixed to 0. Solid lines show the posterior medians and
gray areas show the quantile-based 95% credible intervals.
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4 Concluding Remarks

The ranked data with time index is quite common in many applications. This paper has proposed a
dynamic rating model to analyze such data. The proposed model allows the data to be at the player level
or aggregated at the team level where multiple players can belong to the same team. An efficient Markov
chain Monte Carlo algorithm is developed to estimate model parameters. I have applied the proposed
model to the ranking data from Formula One racing.
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Appendix

A Additional Results: Drivers’ Rating

PEDRO DE LA ROSA (2006)
KEVIN MAGNUSSEN (2014)

ALESSANDRO NANNINI (1989)
LANDO NORRIS (2019)
PAUL DI RESTA (2012)

MICHELE ALBORETO (1985)
CARLOS SAINZ JR. (2019)
MARTIN BRUNDLE (1992)
JOHNNY HERBERT (1995)
ELIO DE ANGELIS (1985)

KAMUI KOBAYASHI (2010)
JARNO TRULLI (2003)
DANIIL KVYAT (2015)
SERGIO PÉREZ (2017)

NICK HEIDFELD (2008)
ROMAIN GROSJEAN (2013)

HEIKKI KOVALAINEN (2008)
HEINZ-HARALD FRENTZEN (1999)

NICO HÜLKENBERG (2014)
GIANCARLO FISICHELLA (2006)

ROBERT KUBICA (2008)
RICCARDO PATRESE (1991)

GERHARD BERGER (1991)
NELSON PIQUET (1986)

JEAN ALESI (1996)
FELIPE MASSA (2007)
EDDIE IRVINE (1999)

JUAN PABLO MONTOYA (2002)
RALF SCHUMACHER (2001)

NIKI LAUDA (1984)
AYRTON SENNA (1991)

JACQUES VILLENEUVE (1997)
CHARLES LECLERC (2019)

ALAIN PROST (1988)
DAMON HILL (1995)

RUBENS BARRICHELLO (2002)
DAVID COULTHARD (2000)

MAX VERSTAPPEN (2019)
KIMI RÄIKKÖNEN (2017)
JENSON BUTTON (2011)
MIKA HÄKKINEN (1999)

DANIEL RICCIARDO (2017)
FERNANDO ALONSO (2012)

MARK WEBBER (2011)
VALTTERI BOTTAS (2019)

NIGEL MANSELL (1992)
MICHAEL SCHUMACHER (2001)

NICO ROSBERG (2016)
SEBASTIAN VETTEL (2011)

LEWIS HAMILTON (2015)

2 4 6
Rating

Career Peak Rating

Top 50 Drivers (1984-2019)

Figure A.1: Career peak ratings for top 50 drivers (1984–2019).
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CHRISTIAN FITTIPALDI (1993)
IVAN CAPELLI (1990)

MARTIN DONNELLY (1990)
KAZUKI NAKAJIMA (2008)

CRISTIANO DA MATTA (2003)
MARCUS ERICSSON (2015)

JAN MAGNUSSEN (1998)
BRUNO SENNA (2012)

ANDREA DE CESARIS (1991)
JYRKI JÄRVILEHTO (1993)

RICARDO ZONTA (2001)
SATORU NAKAJIMA (1988)

MAURÍCIO GUGELMIN (1988)
VITANTONIO LIUZZI (2010)

ESTEBAN GUTIERREZ (2013)
LANCE STROLL (2019)

PATRICK TAMBAY (1984)
SÉBASTIEN BOURDAIS (2009)

TEO FABI (1987)
EDDIE CHEEVER (1987)
TAKUMA SATO (2004)

MARC GENÉ (2004)
JOS VERSTAPPEN (1994)

MICHAEL ANDRETTI (1993)
CHRISTIAN KLIEN (2005)

RENÉ ARNOUX (1984)
ANTÔNIO PIZZONIA (2004)

JAIME ALGUERSUARI (2010)
PIERRE GASLY (2019)

FELIPE NASR (2015)
VITALY PETROV (2010)

MARK BLUNDELL (1995)
SÉBASTIEN BUEMI (2011)

PEDRO DINIZ (1999)
DEREK WARWICK (1988)

STEFAN JOHANSSON (1987)
NICOLA LARINI (1997)

PASTOR MALDONADO (2015)
OLIVIER PANIS (1996)

ALEXANDER ALBON (2019)
THIERRY BOUTSEN (1990)

ESTEBAN OCON (2017)
MIKA SALO (2000)

NELSON PIQUET JR. (2008)
JEAN-ERIC VERGNE (2014)

ADRIAN SUTIL (2011)
JACQUES LAFFITE (1986)

ALEXANDER WURZ (1998)
KEKE ROSBERG (1986)

TIMO GLOCK (2008)

-2 0 2 4
Rating

Career Peak Rating (1984-2019)
Top 51 - 100 Drivers

RICARDO ROSSET (1996)
TORANOSUKE TAKAGI (1998)

MAURO BALDI (1984)
ANTHONY DAVIDSON (2008)

YANNICK DALMAS (1987)
JULES BIANCHI (2013)

STEFANO MODENA (1990)
BERTRAND GACHOT (1991)

GABRIELE TARQUINI (1989)
ROBERT DOORNBOS (2006)

JUSTIN WILSON (2003)
JULIAN BAILEY (1991)

CHARLES PIC (2013)
JONATHAN PALMER (1988)

DAVID BRABHAM (1990)
OLIVIER BERETTA (1994)

ENRIQUE BERNOLDI (2001)
FRANÇOIS HESNAULT (1984)

LUCA BADOER (1999)
ANTONIO GIOVINAZZI (2019)

UKYO KATAYAMA (1994)
PAOLO BARILLA (1990)

ALEX CAFFI (1990)
EMANUELE PIRRO (1989)

TOMÁŠ ENGE (2001)
OLIVIER GROUILLARD (1989)

LUCIANO BURTI (2001)
ÉRIC BERNARD (1990)

BRENDON HARTLEY (2018)
JOLYON PALMER (2016)

NORBERTO FONTANA (1997)
SCOTT SPEED (2007)
AGURI SUZUKI (1991)

RALPH FIRMAN (2003)
JOHNNY DUMFRIES (1986)
ROBERTO MORENO (1987)

STEFAN BELLOF (1985)
ALLAN MCNISH (2002)

JEAN-CHRISTOPHE BOULLION (1995)
ÉRIK COMAS (1992)

CHRISTIAN DANNER (1987)
KARL WENDLINGER (1994)

MARC SURER (1986)
PIERLUIGI MARTINI (1993)

GIANNI MORBIDELLI (1997)
SHINJI NAKANO (1997)

STOFFEL VANDOORNE (2016)
ALESSANDRO ZANARDI (1991)

PHILIPPE STREIFF (1985)
ALAN JONES (1986)

PHILIPPE ALLIOT (1993)

-4 -2 0 2
Rating

Career Peak Rating (1984-2019)
Top 101 - 150 Drivers

Figure A.2: Career peak ratings for top 51 to 150 drivers (1984–2019).
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RENÉ ARNOUX RICCARDO PATRESE STEFAN JOHANSSON TEO FABI THIERRY BOUTSEN

PATRICK TAMBAY PHILIPPE ALLIOT PHILIPPE STREIFF PIERCARLO GHINZANI PIERLUIGI MARTINI

KEKE ROSBERG MARC SURER MICHELE ALBORETO NELSON PIQUET NIGEL MANSELL

ELIO DE ANGELIS GERHARD BERGER HUUB ROTHENGATTER JACQUES LAFFITE JONATHAN PALMER

ALAIN PROST ANDREA DE CESARIS AYRTON SENNA DEREK WARWICK EDDIE CHEEVER
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Figure A.3: Estimated Dynamic Ratings. Only showing drivers that have more than three years of
career. Solid lines are posterior medians and shaded areas are 95% credible intervals based on the posterior
quantile. The rating is relative to Timo Glock’s first year (2004) which is fixed to zero for identification.
Missing years are interpolated via predicted values.
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OLIVIER GROUILLARD ROBERTO MORENO SATORU NAKAJIMA STEFANO MODENA YANNICK DALMAS

MARTIN BRUNDLE MAURÍCIO GUGELMIN MICHAEL SCHUMACHER MIKA HÄKKINEN NICOLA LARINI

IVAN CAPELLI JEAN ALESI JOHNNY HERBERT JULIAN BAILEY JYRKI JÄRVILEHTO

DAVID BRABHAM EMANUELE PIRRO ÉRIC BERNARD GABRIELE TARQUINI GIANNI MORBIDELLI

AGURI SUZUKI ALESSANDRO NANNINI ALEX CAFFI BERTRAND GACHOT CHRISTIAN DANNER
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Figure A.4: Estimated Dynamic Ratings (Cont’). Only showing drivers that have more than three
years of career. Solid lines are posterior medians and shaded areas are 95% credible intervals based on
the posterior quantile. The rating is relative to Timo Glock’s first year (2004) which is fixed to zero for
identification. Missing years are interpolated via predicted values.
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RALF SCHUMACHER RICARDO ROSSET RUBENS BARRICHELLO TARSO MARQUES UKYO KATAYAMA

MARK BLUNDELL MIKA SALO OLIVIER PANIS PEDRO DINIZ PEDRO LAMY

JAN MAGNUSSEN JARNO TRULLI JOS VERSTAPPEN KARL WENDLINGER LUCA BADOER

EDDIE IRVINE ÉRIK COMAS GIANCARLO FISICHELLA HEINZ-HARALD FRENTZEN JACQUES VILLENEUVE

ALESSANDRO ZANARDI ALEXANDER WURZ CHRISTIAN FITTIPALDI DAMON HILL DAVID COULTHARD
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Figure A.5: Estimated Dynamic Ratings (Cont’). Only showing drivers that have more than three
years of career. Solid lines are posterior medians and shaded areas are 95% credible intervals based on
the posterior quantile. The rating is relative to Timo Glock’s first year (2004) which is fixed to zero for
identification. Missing years are interpolated via predicted values.
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SAKON YAMAMOTO SEBASTIAN VETTEL TAKUMA SATO TIMO GLOCK VITANTONIO LIUZZI

NICK HEIDFELD NICO ROSBERG PEDRO DE LA ROSA RICARDO ZONTA ROBERT KUBICA

KIMI RÄIKKÖNEN LEWIS HAMILTON MARC GENÉ MARK WEBBER NARAIN KARTHIKEYAN

FERNANDO ALONSO HEIKKI KOVALAINEN JENSON BUTTON JUAN PABLO MONTOYA KAZUKI NAKAJIMA

ADRIAN SUTIL ANTÔNIO PIZZONIA CHRISTIAN KLIEN CHRISTIJAN ALBERS FELIPE MASSA
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Figure A.6: Estimated Dynamic Ratings (Cont’). Only showing drivers that have more than three
years of career. Solid lines are posterior medians and shaded areas are 95% credible intervals based on
the posterior quantile. The rating is relative to Timo Glock’s first year (2004) which is fixed to zero for
identification. Missing years are interpolated via predicted values.
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SERGIO PÉREZ STOFFEL VANDOORNE VALTTERI BOTTAS VITALY PETROV

PASTOR MALDONADO PAUL DI RESTA PIERRE GASLY ROMAIN GROSJEAN SÉBASTIEN BUEMI

KEVIN MAGNUSSEN LANCE STROLL MARCUS ERICSSON MAX VERSTAPPEN NICO HÜLKENBERG

ESTEBAN GUTIERREZ ESTEBAN OCON JAIME ALGUERSUARI JEAN-ERIC VERGNE KAMUI KOBAYASHI

ANTONIO GIOVINAZZI BRUNO SENNA CARLOS SAINZ JR. DANIEL RICCIARDO DANIIL KVYAT
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Figure A.7: Estimated Dynamic Ratings (Cont’). Only showing drivers that have more than three
years of career. Solid lines are posterior medians and shaded areas are 95% credible intervals based on
the posterior quantile. The rating is relative to Timo Glock’s first year (2004) which is fixed to zero for
identification. Missing years are interpolated via predicted values.
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B Additional Results: Team’s Rating

Mercedes Red Bull Renault / Lotus F1 Williams

BAR / Honda / Brawn Benetton Ferrari McLaren
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Figure B.1: Dynamic Rating Estimates for World Champion Constructors. Solid orange lines represent
the year of the championship. Estimates are based on the entire teams in the data (1984–2019). The
rating is relative to the first year of Super Aguri (2006), which is fixed to 0. Solid lines in black show the
posterior medians and gray areas show the quantile-based 95% credible intervals.
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Jaguar / Stewart Jordan / Midland / Spyker Lambo Larrousse Leyton House / March

Fondmetal Force India / Racing Point Forti Haas HRT

Brabham Caterham Dallara Euro Brun Ferrari

AGS Arrows / Footwork ATS BAR / Honda / Brawn Benetton / Toleman
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Figure B.2: Dynamic Rating Estimates for Formula One Teams. Presented are teams with more than
two years in the racing. Estimates are based on the entire teams in the data (1984–2019). The rating is
relative to the first year of Super Aguri (2006), which is fixed to 0. Solid lines show the posterior medians
and gray areas show the quantile-based 95% credible intervals.
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Team Lotus Toro Rosso Toyota Tyrrell Williams

Renault / Lotus F1 Rial Sauber / Alfa Romeo Simtek Super Aguri

Onyx Osella Pacific RAM Red Bull

Ligier / Prost Manor / Virgin Racing McLaren Mercedes Minardi
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Figure B.3: Dynamic Rating Estimates for Formula One Teams (Cont’). Presented are teams with
more than two years in the racing. Estimates are based on the entire teams in the data (1984–2019).
The rating is relative to the first year of Super Aguri (2006), which is fixed to 0. Solid lines show the
posterior medians and gray areas show the quantile-based 95% credible intervals.
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