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1 Motivation

The multinomial regression is a useful model for analyzing relationships between categorical
outcomes and predictors, and is routinely used in many fields. The model is also useful as a
building block for more complex models. In fact, we encounter the multinomial logit every
time we want to incorporate covariates in latent variable models (i.e., finite mixture models)
such as stochastic blockmodels for network data or topic models for text data analysis.

In this note, I derive an EM algorithm for the standard multinomial logistic regression
model as a useful reference. An open-source software package (emlogit) is available for
implementing the proposed algorithm.

2 Model

Let Yi denote the multinomial response with J categories. As in the standard setup, I assume
that

∑J
j=1 Yij = 1, that is,

Yi ∼ Multinomial(1,ψi)

where
ψij =

exp(X⊤
i βj)∑J

j′=1 exp(X
⊤
i βj′)

.

To identify coefficients, I fix β1 = 0. The model is completed by placing a normal prior
on coefficients,

βj ∼ N (µ0,Σ0)

In this note, we are interested in estimating the posterior mode of β.
∗R package emlogit is available to implement the proposed method at https://github.com/soichiroy/

emlogit.
†Graduate student, Department of Government, Harvard University. Email: syamauchi@g.harvard.edu.
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3 Estimation

3.1 Setup

The joint density of Y and β is given by

(3.1) p(Y,β | µ,Σ) =

J∏
j=1

p(βj | µ0,Σ0)

n∏
i=1

{
exp(X⊤

i βj)∑J
j′=1 exp(X

⊤
i βj′)

}Yij


By taking log, we have

log p(Y,β) =

J∑
j=1

log p(βj | µ0,Σ0) +

n∑
i=1

J∑
j=1

Yij log

{
exp(X⊤

i βj)∑J
j′=1 exp(X

⊤
i βj′)

}

=

J∑
j=1

log p(βj | µ0,Σ0)

+
n∑

i=1

[
Yij log

{
exp(X⊤

i βj)

cij + exp(X⊤
i βj)

}
+

∑
j′ ̸=j

Yij′ log

{
exp(X⊤

i βj′)

cij + exp(X⊤
i βj)

}]

where cij =
∑

h̸=j exp(X
⊤
i βh).

Then conditioning on βj′ for j′ ̸= j, we have

log p(Y,βj | β−j) = log p(βj | µ0,Σ0) +
n∑

i=1

log

{
exp(X⊤

i βj)
Yij/cij

1 + exp(X⊤
i βj)/cij

}

= log p(βj | µ0,Σ0) +
n∑

i=1

log

{
exp(X⊤

i βj − log cij)
Yij

1 + exp(X⊤
i βj − log cij)

}

Suppose now, we augment wij drawn from Polya-Gamma distribution and consider the
joint density p(Y,ωj ,βj | β−j). Then, we have that

log p(Y,ωj ,βj | β−j) = log p(Y,ωj | βj ,β−j) + log p(βj)

∝
n∑

i=1

{
− 1

2
ωijψ

2
ij + (Yij − 1/2)ψij

}
+ log p(βj | µ0,Σ0)

where ψij = X⊤
i βj − log(cij).
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3.2 EM-algorithm

• M-step: We cyclically update βj for j = 2, . . . , J by maximizing the following criteria
with respect to βj by treating β−j as fixed.

Qj(βj) = Eω[log p(Y,ωj | βj ,β−j)] + log p(βj | µ0,Σ0)

=

n∑
i=1

{
− 1

2
E[ωij ]ψ

2
ij + (Yij − 1/2)ψij

}
+ log p(βj | µ0,Σ0)

Let S = X⊤diag({ωij}ni=1)X and di = E[ωij ] log(cij)+ (Yij −1/2). Then, the first order
condition is

0 =
∂

∂βj
Qj(βj)

=
∂

∂βj

{
− 1

2
β⊤
j (S+Σ−1

0 )βj + β
⊤
j (X

⊤d+Σ−1
0 µ0)

}
= −(S+Σ−1

0 )βj + (X⊤d+Σ−1
0 µ0)

which implies the closed form update:

(3.2) β̂j ← (S+Σ−1
0 )−1(X⊤d+Σ−1

0 µ0).

• E-step: We update E[ωij ] for i = 1, . . . , n and j = 1, . . . , J . This expectation is over
the posterior distribution of ωij evaluating β at the current value. Since ωij | β,Xi ∼
PG(1, ψ̂ij), we can evaluate the expectation by

(3.3) E[ωij ]←
1

2ψ̂ij

tanh(ψ̂ij/2)

where ψ̂ij = X⊤
i β̂j − log

∑
j′ ̸=j exp(X

⊤
i β̂j′). This step is a direct application of the

following fact: If ωi ∼ PG(b, c), then

E[ωi] =
b

2c
tanh(c/2).
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