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Abstract

Recent innovations in regularization methods offer an important breakthrough to regression

analysis with many predictors. However, existing regularization methods commonly assume

that the level of sparsity or shrinkage does not change over time. This assumption is problem-

atic because regularizing time-varying parameters toward zero can lead to erroneous inferential

results. In this paper, we present a statistical method that allows both regularization and es-

timation of parameter changes in high dimensional data. The proposed method, which we call

hidden Markov Bayesian bridge model (HMBB), uses the Bayesian bridge model for parameter

regularization and a hidden Markov model to estimate parameter changes. Simulation studies

show that HMBB outperforms other regularization methods in recovering time-varying parame-

ters as well as time-constant parameters in various settings. We apply HMBB to the estimation

of the effect of U.S. food aid on civil conflicts and report new findings.
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1 Introduction

In social science data analysis, researchers are usually interested in estimating the effect of time-

varying covariates (X) on a response variable (y) in the presence of many time-varying confounding

variables (Z). Time series cross-national data in political science is an example where X and Z

are time-varying covariates of country-specific factors and y is a response vector observed at the

country level. In this setup, an important challenge is two-fold; (1) identifying time-varying effects

of X on y while (2) properly controlling for time-varying effects of confounding variables (Z) on y.

We consider this challenge as the change-point problem in high-dimensional regression analysis.

It is a change-point problem as we need to examine temporal heterogeneity of parameters. It is

also a high-dimensional problem because design matrices of subset data (e.g. a segment of (X,Z)

pertaining to the first regime) could have larger p than n, where p is the number of predictors and

n is the number of observations.

Recent innovations in regularization methods offer an important breakthrough to high-dimensional

regression analysis. However, existing regularization methods commonly assume that the level of

sparsity or shrinkage does not change over time and hence applying these methods to time series

data with change-points can lead to erroneous inferential results.

Figure 1 illustrates the change-point problem in regularized regression analysis. We generate

100 time series observations with a single break. The number of predictor is 50, among which 40

predictors are zero. Values of 10 nonzero coefficients are randomly drawn in each regime from a

uniform distribution U(−3, 3). Colored dots of Regime 1 and Regime 2 indicate the ground truth.

We fit seven popular regularization methods (Lasso, Elastic Net, Ridge, adaptive lasso, fused lasso,

Bayesian lasso, and horseshoe) in addition to the ordinary least squares (OLS) method, which is

shown as benchmark.

The results are striking. RMSEs of the regularization methods are as large as that of OLS

and, even worse, many large time-varying signals are forced to be zero by most regularization

methods. We highlight two types of inferential fallacy here. First, for coefficient changes into

opposite directions, estimates of regularization methods suffer from attenuation bias. Second, for

coefficient changes with same signs, estimates of regularization methods underestimate regime-

changing parameters.

In this paper, we propose a statistical method to address the above problems. We take a

fully Bayesian approach to the change-point problem in high-dimensional regression analysis and

present a method that allows both regularization and estimation of breaks in high dimensional

regression analysis. The proposed method uses Polson, Scott and Windle (2014)’s Bayesian bridge

model for efficient parameter regularization in a high-dimensional regression model. The Bayesian

bridge model provides two advantages over other modeling choices. The first advantage is that

the Bayesian bridge model has the property of avoiding the overshrinkage of large coefficients, cor-
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Figure 1: Change-point Problem in Regularized Regression Analysis: True parameter values are displayed
by transparent dots (•) and vertical lines. Estimates are marked by red asterisks (∗). We generate a synthetic
time series data set with T = 100 and the number of predictors is 50. The number of non-sparse predictors
is 10. A single break is planted in the mid-point (t = 50). Regime-specific non-sparse parameters (40 for
each regime) are generated from a uniform distribution U(−3, 3) RMSE is the root mean squared error of

estimated coefficients: RMSE =
√
p−1

∑p
j=1(β̂j − βtrue

j )2.

responding to the oracle property in classical regularization estimators (Polson and Scott, 2010).

The second advantage of the Bayesian bridge model is computational efficiency due to low correla-

tions global and local shrinkage parameters. As Polson, Scott and Windle (2014) noted, Bayesian

inference of global-local shrinkage prior models such as Bayesian lasso and horseshoe prior models

suffer from high autocorrelations in MCMC draws as global and local shrinkage parameters are

highly correlated with each other. We call the proposed method the hidden Markov Bayesian

bridge model (HMBB).

1.1 Related Works

Many statistical methods have been developed to address the first problem of identifying time-

varying effects (e.g. Quandt, 1958; Chow, 1960; Chernoff and Zacks, 1964; Hamilton, 1989; Andrews,

1993; Barry and Hartigan, 1993; Bai and Perron, 1998; Chib, 1998). However, most of these

methods work under a simple regression model with only a constant or a few covariates. A large

number of covariates poses a serious computational challenge in these change-point models as the

number of parameters increases multiplicatively with the number of breaks.

There have been some attempts to solve the change-point problem in regularized regression

analysis. First, the fused lasso is one of the most well known examples (Tibshirani et al., 2004;
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Bleakley and Vert, 2011; Tang and Song, 2016; Qian and Su, 2016). The fused lasso applies the

method of fusion either across parameters in the nearest neighbor (
∑p

j=2 |βj −βj−1|) for classifica-
tion and pattern recognition or across time (

∑T
t=2 |βt − βt−1|) for break detection. Thus, a search

of jumps in parameter values for all parameters across time is computationally demanding and

inefficient as the number of parameters increases. Moreover, the idea of parameter “fusion” does

not provide measures of uncertainty on break points and break numbers.

Second, there has been a surge of high-dimensional change-point detection methods in frequen-

tist approaches (e.g. Frick, Munk and Sieling, 2014; Chan, Yau and Zhang, 2014; Lee, Seo and Shin,

2016; Lee et al., 2017). Most of these methods focus on simple cases of high-dimensional change-

point problems. By simple cases, we mean the case in which covariates with regime-changing

coefficients are known or the case in which the number of covariates with regime-changing coeffi-

cients are small. However, except some rare cases, most social science researchers do not have clear

knowledge about the number of breaks, the timing of breaks, the scope of time-varying covariate

effects, and the range of covariates (and their interactions) that need to be included in a regression

model.

1.2 Plan of the Paper

After presenting our model in Section 2, we examine the performance of HMBB in various high-

dimensional data settings (Section 3). We check the performance of HMBB in high-dimensional

data under various sparsity settings. Simulation studies show that HMBB outperforms other

regularization methods in recovering time-varying parameters as well as time-constant parameters.

Then, Section 4 revisit two studies in economics and political science. First, we illustrate how

HMBB can be used to estimate heterogeneous causal effects in the framework of the two-stage

lease square (2SLS) regression analysis using Nunn and Qian (2014)’s study of the effect of US

food aid on civil conflicts. We show how HMBB improves their original analysis by identifying

parameter heterogeneity in the first stage equation. Second, we discuss how HMBB can be used to

identify time-varying strong signals from many covariates using HMBB and the decoupled shrinkage

and selection (DSS) method proposed by Hahn and Carvalho (2015). We revisit Alvarez, Garrett

and Lange (1991)’s study on the role of left parties on economic growth.

The proposed method is available via the open-source software BridgeChange in R environment.

2 The Proposed Methodology

2.1 The Setup

Polson, Scott and Windle (2014) present a fully Bayesian treatment of the bridge model. The

key intuition of their Bayesian treatment lies in constructing joint priors for βj and local shrinkage
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parameters (λj) using Lévy processes.1 To introduce the Bayesian bridge model, we write the basic

setup for Bayesian regularized regression models as a scale mixture of normal structure:

y|β, σ2 ∼ N (Xβ, σ2In)

βj |τ2, λ2j ∼ N (0, τ2λ2j )

λ2j ∼ p(λ2j )

τ2 ∼ p(τ2)

σ2 ∼ p(σ2)

where y ∈ Rn and X ∈ Rn×p where n is the number of observations and p is the number of predic-

tors. In this setup, the global shrink parameter τ2 controls the overall sparsity of the model and

local shrinkage parameters λj identify signals. What distinguishes different Bayesian regularization

models is the choice of a prior distribution of β and its hyperparameter (τ2). For example, the

use of a double exponential prior for β leads to Bayesian lasso (Park and Casella, 2008) and the

horseshoe prior model uses a normal prior for β and an inverted-beta distribution for λ2j (Carvalho,

Polson and Scott, 2010).

The prior distribution of β for the Bayesian bridge model is a product of independent expo-

nential power priors:

p(β|τ, α) ∝
p∏

j=1

exp(−|βj/τ |α) τ = ν−1/α. (2.1)

Let p(λj) be the density of 2Sα/2 where Sα is the Lévy alpha-stable distribution. Then, using Lévy

processes and scale mixtures of normal representation discussed in Polson and Scott (2012), a joint

prior distribution of regression parameter β and local shrinkage parameter Λ = diag(λ1, . . . , λj)

are represented as follows:

p(β,Λ|τ, α) ∝
p∏

j=1

exp

(
−
β2j
2τ2

λj

)
p(λj). (2.2)

Prior distributions of the remaining parameters (σ2, α, τ) are defined as follows:

σ2 ∼ Inverse-Gamma

(
a0
2
,
b0
2

)
α ∼ Uniform (0, 1)

ν ∼ Gamma (c0, d0)

where τ = ν−1/α.

1According to Polson and Scott (2012), “all totally monotone penalty functions that vanish at zero correspond to
priors that can be represented in terms of a subordinator” (Polson and Scott, 2012, 292).
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Then, the posterior distribution of the Bayesian bridge linear regression model is

p(β, σ2,Λ, α, ν|y,X) ∝ p(y|β, σ2)p(β,Λ|τ, α)p(σ2)p(α)p(ν) (2.3)

∝ exp
[
− 1

2σ2
(y −Xβ)⊤(y −Xβ)

] p∏
j=1

exp

(
−
β2j
2τ2

λj

)
p(λj)

×
(

1

σ2

)a0
2
+1

exp

(
− b0
2σ2

)
νc0−1 exp(−d0ν).

2.2 The Hidden Markov Bayesian Bridge Model

We utilize a hidden Markov model (HMM) to detect major structural breaks in times series data

in various forms. As shown by many authors (Baum et al., 1970; Chib, 1998; Robert, Ryden and

Titterington, 2000; Cappe, Moulines and Ryden, 2005; Scott, James and Sugar, 2005; Frühwirth-

Schnatter, 2006; Teh et al., 2006), HMM efficiently detects change-points in various regression

models using the conditional independence of data given hidden states.

Let S denote a vector of hidden state variables where st is an integer-valued hidden state

variable at t

S = {(s1, . . . , sn) : st ∈ {1, . . . ,M}, t = 1, . . . , n},

and P as a forward moving M ×M transition matrix where pi is the ith row of P and M is the

total number of hidden states. Then, the data density of HMBB can be written as follows:

n∏
t=1

p(yt|xt,β, σ
2,Λ, α, ν) =

∫
p(y1|s1,x1,β1, σ

2
1,Λ1, α1, ν1)

×
n∏

t=2

M∑
m=1

p(yt|xt, st,βst , σ
2
st ,Λst , αst , νst)

×Pr(st = m|st−1,Yt−1,Xt−1,β, σ
2,Λ, α, ν)dS

where Yt−1 and Xt−1 indicate all the observed data up to t− 1. The state transition is defined as

a forward-moving first-order discrete Markov process:

st|P,π ∼ Markov(P,π)

P︸︷︷︸
M×M

= (p1, . . . ,pM )

pi ∼ Dirichlet(αi,1, . . . , αi,M ) for all i < M .

To illustrate the model introduced above, we discuss a case with one change-point. Suppose

that we know the location of the structural break (i.e., a vector S is known). Then, we can write
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a posterior density as

p(λj)p(σ
2)p(α)p(ν)

n∏
t=1

2∏
m=1

{
exp

(
− 1

2σ2m
(yt − x⊤

t βm)2
) p∏

j=1

exp

(
−
β2m,j

2τ2m
λm,j

)}1{st=m}

= p(λj)p(σ
2)p(α)p(ν)

∏
1≤t≤t⋆

{
exp

(
− 1

2σ21
(yt − x⊤

t β1)
2

) p∏
j=1

exp

(
−
β21,j
2τ21

λ1,j

)}

×
∏

t⋆<t′≤n

{
exp

(
− 1

2σ22
(yt′ − x⊤

t′β2)
2

) p∏
j=1

exp

(
−
β22,j
2τ22

λ2,j

)}

where t⋆ = arg max
t:st=1

st. (Note that S is ordered, so st = 1 for all 1 ≤ t ≤ t⋆). The above

posterior density illustrates that if we were to know the change point location(s) a priori, it would

be equivalent to fit two separate regression models with shrinkage prior to the data before and

after the break, thus enabling time-varying shrinkage.

However, we usually do not have prior knowledge about S, if not the number of breaks. Instead,

the proposed model recovers S using Chib (1998)’s algorithm together with other model parameters

such as regression coefficients and shrinkage parameters.

2.3 Posterior Computation

We discuss the sampling algorithm of HMBB, highlighting three major modifications from Polson

and Scott (2012). For notational simplicity, we denote segmented data corresponding to state m

as ym and Xm. Also, nm denotes the number of observations pertaining to state m.

• Sampling p(β|α,Λ, σ2, τ,P,S,y)

The posterior of β follows the multivariate normal distribution, which is given by

βm|σ2, λm, αm, τ,P,S,ym ∼ Np

(
VX′

mym

σ2m
,V =

(
X′

mXm +
σ2m
τ2
λmI

)−1
)
. (2.4)

1. When n≫ p, we can directly sample βm from Equation 2.4.

2. When n ≤ p, inverting the covariance matrix (p × p) is very expensive, which costs

roughly O(p3). Instead, we use the singular value decomposition (SVD) of the design

matrix: Xm = UDV⊤ whereU ∈ Onm×nm , V ∈ Op×nm andD = diag(d1, . . . , dnm). Let

λm = diag({λk,mσ2m/τ2m}
p
k=1) be a diagonal matrix of penalty parameters. We further

define D = [D|0nm×(p−nm)] and V = [V|0p×(p−nm)] as augmented matrices.

When the design matrix is not (column) full-rank, which is the case with p > n, this

operation allows D to have dimension nm × p. This is crucial since λm has dimension
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of p× p. Then,

(X⊤
mXm + λm) = VD⊤U⊤UDV⊤ + λm

= VD⊤DV⊤ + λm

= V(D
⊤
D+ λm)V

⊤
.

First, the posterior variance is given by

Σm = (V(D
⊤
D+ λm)V

⊤
)−1 = V(D

⊤
D+ λm)−1V

⊤
.

This quantity is easy to compute since (D
⊤
D+ λm) is a diagonal matrix of the form

D
⊤
D+ λm = diag({d2k + λk,mσ

2
m/τ

2
m}nm

k=1, {λk′,mσ
2
m/τ

2
m}

p
k′=nm+1).

Second, the posterior mean µm is then given by

µm = ΣmX⊤
mym/σ

2
m

= V(D
⊤
D+ λm)−1D

⊤
U⊤ym/σ

2
m.

Then, using µm and Σm, the sampling is given by

(a) Let A = V(D
⊤
D+ λm)−1/2.

(b) Draw zk from standard normal for k = 1, . . . , p.

(c) Update βm by βm ← µm +Az

(d) Repeat the above steps for all m = {1, . . . ,M}

• Sampling p(α|Λ,β, σ2, τ,P,S,y)

It is well known that when 0 < α ≤ 1, the classical bridge estimator has the variable

selection feature (Murphy, 2012). We believe that Polson, Scott and Windle (2014) use the

support of 0 < α ≤ 1 to set the bridge model between two polar cases of the lasso (α = 1)

and the subset selection method (α = 0) in classical statistics. However, the support of

0 < α ≤ 1 does not guarantee the variable selection feature in Bayesian framework because

the posterior of regression parameters depends on the complicated order statistics as shown

by Polson and Scott (2010). Generally speaking, one-group model of Bayesian regularization

methods cannot guarantee the variable selection feature (Polson and Scott, 2010; Hahn and

Carvalho, 2015). Monte Carlo experiments also show that the constraint of 0 < α ≤ 1 often

produces larger RMSEs than Bayesian bridge estimates with 0 < α ≤ 2.

Polson, Scott and Windle (2014) suggest a random-walk Metropolis Hastings (MH) sampler.
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However, a random-walk MH sampler can produce highly correlated draws, slowing down

the mixing of the Markov chain. We use a Griddy Gibbs sampler (Tanner, 1996) for the

sampling of α because α is univariate and its support is bounded by (0, 2]. For a Griddy

Gibbs sampler, we evaluate the unnormalized density of the conditional posterior at points

between 0.1 and 2.0 at an interval of 0.02. Then, we draw αm from the points on the grid

with probability proportional to the empirical density.

• Sampling p(τ |Λ,β, α, σ2,P,S,y).

Sample ν first and then transform ν to τ .

νm ∼ Gamma(c, d)

τm = ν−
1

αm

where c = c0 + p/αm and d = d0 +
∑p

j=1 |βj,m|αm .

• Sampling p(β0|Λ,β, α, τ, σ2,P,S,y)

We separately estimate the intercepts for each regime. Since all the data are centered, this

estimate does not affect updates for other parameters. But posterior samples for the intercept

are useful for making prediction on the original scale.

β0m ← ym −X
⊤
mβm

where

ym =

∑n
t=1 1{st = m}yt∑n
t=1 1{st = m}

, and Xm,j =

∑n
t=1 1{st = m}Xm,tj∑n

t=1 1{st = m}
. (2.5)

• Sampling S|Λ,β, α, τ, σ2,P,y Sample S recursively using Chib (1998)’s algorithm. Using

Bayes’ Theorem, Chib (1998) shows that

p(st|St+1,Θ) ∝ p(st|Θ,Y1:t,X1:t)︸ ︷︷ ︸
State probabilities given all data up to t

Transition probability at t︷ ︸︸ ︷
p(st+1|st,Θ) .

The second part on the right hand side is a one-step ahead transition probability at t, which

can be obtained from a sampled transition matrix (P). The first part on the right hand side

is state probabilities given all data, which can be simulated via a forward-filtering-backward-

sampling algorithm as shown in Chib (1998).

• Sampling from P|Λ,β, α, τ, σ2,S,y

pkk ∼ Beta(a0 + jk,k − 1, b0 + jk,k+1)
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where pkk is the probability of staying when the state is k, and jk,k is the number of jumps

from state k to k, and jk,k+1 is the number of jumps from state k to k + 1.

3 Simulation Studies

3.1 Simulation Design

In this section, we conduct a series of Monte Carlo simulations to test the performance of the

proposed models in high-dimensional regression with change-points when n ≤ p. To save space,

we only report test results from high dimensional data with a change-point. Additional simulation

results without change-points, which illustrates our implementation against Lasso, elastic net and

ridge, are reported in the supplementary material (SI Section 3).

Following Donoho (2005) and Donoho and Stodden (2006), simulated data vary by two dimen-

sions: the level of underdeterminedness (δ = n/p) and the level of sparsity (ρ = k/n) where n is

the number of observations and k is the number of non-sparse predictors. To make interpretation

simple, we fix the number of predictors (p) at 200 and vary n from 10 to 200, and k from 1 to 200

so that both the level of underdeterminedness (δ = n/p) and the sparsity level (ρ = k/n) take 50

equidistance points on the interval [0.1, 1].

Then, we use an underlying model of y = Xβ+ϵ, xij ∼ N(0, 1), ϵ ∼ Normal(0, 42In) by varying

δ and ρ. The change point is set at the mid point, ⌊n/2⌋, and coefficients are drawn independently

for each regime. Based on the value of k, regression coefficients are set as β1:k ∼ Uniform(0, 50) and

βk+1:p = 0.2 We create 502 unique pairs of (δ, ρ) and for each pair (δ, ρ) and simulate 20 datasets

from the same underlying model. In total, the number of simulated data sets is 502× 20 = 50, 000.

Since there exists no comparable method that implements change-point analysis of regulariza-

tion methods, we develop two hybrid lasso estimates as benchmark:

• Lasso (Estimate): Two step Lasso estimates using the estimated break point. In the first

step, a break detection is done using the lasso residuals and the HMM. In the second stage,

the lasso method is applied to subset data, respectively.

• Lasso (Oracle): Separate Lasso estimates using the true break point

For HMBB estimates, we set the correct number of break, but the location of the break point is

determined by HMBB. The point of comparison is to see (1) whether a HMBB with an unknown

break point outperforms a two-step approach of Lasso (Estimate) and (2) how closely HMBB

performs against Lasso (Oracle) that uses the ground truth knowledge about a break point.

2 We also consider a correlated design matrix where Cov(Xij , Xij′) = Σj,j′ = η for j ̸= j′ and Σjj = 1. We draw
Xi from a multivariate normal distribution with mean zero and covariance Σ, Xi ∼ MVN(0,Σ). We take η = 0.3, 0.7.
Results for simulations based on correlated design matrix are reported in SI Section 3.4 for a change-point case and
in SI Section 3.3 for a no change-point case.
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We evaluate performance of different regularization methods using the criteria summarized in

Table 1. First, Prediction Loss is related with the persistency or risk consistency (e.g., see Green-

shtein and Ritov, 2004) – one of the oracle properties that high-dimensional regression estimator

wishes to satisfy. Second, Normalized Estimation Loss captures parameter consistency. Achieving

high performance on Normalized Estimation Loss usually requires stronger assumptions than those

for the prediction loss. Last, Cross-validation Loss checks out-of-sample predictive accuracy. We

conduct a 2-fold cross-validation prediction to compute the cross-validation loss.

Table 1: Simulation Performance Criteria

Metric Formula Property

Prediction Loss Lpred(β̂;β
⋆) = 1

n
∥Xβ̂ −Xβ⋆∥2 in-sample model fit

Normalized Estimation Loss L2(β̂;β
⋆) = ∥β̂−β⋆∥2

∥β⋆∥2 parameter consistency.

Cross-validation Loss LCV(ŷ;y
⋆) = 1

|Ic|
∑

t∈Ic(yt −X⊤
t β̂)

2 out-of-sample predictive accuracy

3.2 Simulation Results

Table 2: Average Estimation Loss from High Dimensional Data with Change-points. The reported numbers
are from simulations of 50, 000 data sets. True data has one break. MCMC simulation for HMBB is 100
and burn-in is 100.

Prediction Loss

Method Mean SD

HMBB 0.35 0.11
Lasso (Estimate) 0.16 0.06
Lasso (Oracle) 0.15 0.05

Normalized Estimation Loss

Method Mean SD

HMBB 0.10 0.00
Lasso (Estimate) 0.12 0.01
Lasso (Oracle) 0.09 0.02

Cross-validation Loss

Method Mean SD

HMBB 0.45 0.11
Lasso (Estimate) 0.53 0.14
Lasso (Oracle) 0.46 0.16

Table 2 summarizes the results of the simulation for a single change-point case. HMBB produces

slightly larger values of prediction loss than Lasso (Estimate) and Lasso (Oracle). Panel (A) in
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Figure 2: Results of Simulation Studies using Univariate Time Series Data with One Change-point.
Panel (A): Prediction Loss, Lpred(β̂;β

true). Panel (B): Normalized Estimation Loss, L2(β̂;β
true) =

∥β̂−βtrue∥2/∥βtrue∥2. Panel (C): Cross-validation Loss, LCV(ŷ
test;ytest). We fix p = 200 and vary α and

ρ between 0.05 and 1. Thus, each cell in the graph represents a data with (N, p, k). We simulate 25 data
sets from each (N, p, k) and take the median error.

Figure 2 shows that the source of the problem is when data is highly small and the number of

non-sparse signal is close to the number of observations. However, for the normalized estimation
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loss and the cross-validation loss, HMBB outperforms Lasso (Estimate). To our surprise, HMBB

slightly outperforms Lasso (Oracle) in the cross-validation loss. Panel (C) of Figure 2 implies that

Lasso (Oracle) predicts out-of-sample data relatively well when k/n is small. However, as k/n

becomes larger, the overfitting of Lasso (Oracle) produces poor predictive values of out-of-sample

data compared to HMBB. This result can be interpreted in two ways. First, it implies that by

taking a known break point as fixed, Lasso (Oracle) produces overfitting. Second, this result can be

connected with the theoretical threshold of penalized regression models with ℓ1 norm. According

to Donoho and Stodden (2006), “there is a breakdown point for standard model selection schemes,

such that model selection only works well below a certain critical complexity level” (Donoho and

Stodden, 2006, 1).

4 Applications

4.1 Estimating Heterogenous Causal Effects

Nunn and Qian (2014) examine the effect of food aid on civil conflicts using the instrumental

variable design. The authors exploit two exogenous variations in this study. Specifically, the first

is exogenous time variation in US wheat production, which is driven by weather conditions in

the US. The second is cross-sectional variations in a country’s likelihood of being a US food aid

recipient. Then, they use the interaction of last year’s wheat production and the frequency of a

country’s US food aid receipt as an instrument, which is denoted by zirt.

The original study reports 2SLS estimates. The first and second stage equations used in Nunn

and Qian (2014) are given by

yirt = βdirt + xirtΓ + φrt + ψir + νirt (4.1)

dirt = αzirt + xirtΓ + φrt + ψir + ϵirt. (4.2)

Here i denotes a country, r denotes a region, and t is a year. φrt and ψir are fixed-effects at the

region-year and country-year levels, respectively. ditr is the endogenous variable (the quantity of

wheat aid) and xitr includes a set of exogenous control variable. The total number of observations

is 4,089 covering 125 non-OECD countries during the 36 years, 1971-2006.

There are two potential methodological concerns in Nunn and Qian (2014)’s analysis. The first

concern is the high-dimensionality of the data. While country-level observations vary from 5 to

36 years, the number of control variables including all dummy indicators is as large as 352. The

second concern is temporal heterogeneity in the first-stage equation parameters (Equation 4.2). If

the effects of the (included and excluded) instruments vary across time, causal inference using the

2SLS must take into account these parameter heterogeneity in Equation 4.2.
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Figure 3: Break Detection in the First Stage Regression

We revisit the first-stage estimation of the original analysis using HMBB. The left panel of

Figure 3 shows WAIC scores for six HMBBs with a varying number of breaks up to five. Adding

breaks improves the predictive accuracy of the model until three breaks (i.e. four regimes) and

then it deteriorates the predictive accuracy. The right panel shows that estimated break points are

1986, 1991, and 1998.

The left panel of Figure 4 shows the time-varying effects of the instrument on the endogenous

variable (α in Equation 4.2). The blue dots show the pooled estimate using double machine learning

method and red dots indicate regime-specific estimates using HMBB. We can see that the effect

of the instrument on the treatment variable shifts dramatically over time, showing the largest

effect between 1987 and 1991, followed by the period of 1971-1985. After 1992, which corresponds

to the post-Cold War period, the effect of the instrument on the endogenous variable diminishes

significantly toward 0.

Then, how do these regime-changing effects of the instrument affect causal effects of food aid

on civil conflicts (β)? To answer this question, we first partitioned data based on the four identified

regimes and then apply the debiasing method proposed for the IV regression with high-dimensional

covariates by Chernozhukov, Hansen and Spindler (2015) and Chernozhukov et al. (2018). This

“double machine learning” (DML) method, which is implemented in hdm package in R, guarantees

that point estimates are not biased due to regularization and returns proper confidence intervals.3

The blue dots in the right panel of Figure 4 indicate the original pooled 2SLS estimate and red

dots are regime-specific β’s (DML after HMBB). It clearly shows that the pooled causal estimate

3We report the results from this method on the entire dataset in SI Section 8.
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Figure 4: Regime-changing α and β in the first- and second-stage equations in Equation 4.1 and Equation
4.2, respectively: Vertical bars indicate 95% credible intervals (left) and 95% confidence intervals (right).

of 0.004 represents only two regimes (1971-1985 and 1992-1997). The causal effect of food aid

on civil conflicts is close to 0 during 1987-1991, which corresponds to the period of the largest

partial correlation between the instrument and the endogenous variable as shown in the left panel

of Figure 4. If we take the size of the partial correlation as reflecting the strength of the instrument,

there is strong evidence to suspect the existence of sizable causal effects of food aid on intrastate

conflicts.

It is notable to see the post-1991 causal effect estimates of food aid on intrastate conflicts

include 0 in their 95% confidence intervals. The break point of 1991 coincides with many important

international events that affect US food aid and intrastate conflicts at the same time such as the

revolutions within Eastern European countries in 1989, the dissolution of the Soviet Union, and the

end of the Cold War in 1991. That is, the diminishing effect of food aid on intrastate conflicts after

1991 is likely to be caused by systematic changes in the international system and corresponding

changes in the US foreign policy toward developing countries.4

4This possibility is also noted by Nunn and Qian (2014) and they addressed this issue by interacting “food aid
and a Cold War indicator variable”(Nunn and Qian, 2014, 1662). They found the coefficient of the interaction term
to be “negative, moderate in magnitude, but statistically insignificant” (Nunn and Qian, 2014, 1662) and did not
further investigate the influence of the Cold War. First, the lack of statistical significance does not mean anything
toward the tested hypothesis. Second, the single interaction term of the Cold War dummy with the instrument does
not suffice to check time-varying causal effects. The effects of the Cold War are much wider and other nuisance
parameters must have different associations with the endogenous variable and the dependent variable during and
after the Cold War. In this regard, the room for dynamic misspecification is huge for the “negative, moderate in
magnitude, but statistically insignificant” results.
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Table 3: Estimates of α and β in the first- and second-stage equations in Equation 4.1 and Equation
4.2, respectively. Est. refers to point estimates, 95%CI Low (High) refers to lower (upper) bound of 95%
confidence intervals.

Data Parameter Est. 95%CI Low 95% CI High

Pooled α 0.104 0.103 0.105
Regime 1 α 0.106 0.103 0.109
Regime 2 α 0.350 0.296 0.407
Regime 3 α 0.058 0.054 0.065
Regime 4 α 0.026 0.023 0.031

Pooled β 0.004 0.001 0.007
Regime 1 β 0.004 0.001 0.006
Regime 2 β 0.000 -0.002 0.002
Regime 3 β 0.003 -0.002 0.007
Regime 4 β 0.008 -0.011 0.026

4.2 Changepoint Analysis and Variable Selection

Alvarez, Garrett and Lange (1991) study the effect of labor party government on economic growth

using a time series cross-national data covering 16 OECD countries for the period of 1970 - 1984.

The key finding of Alvarez, Garrett and Lange (1991) was the positive interaction effect of the left-

party government size with the centralized labor. This study is one of the most important findings

in comparative politics, producing many subsequent studies (Alvarez, Garrett and Lange, 1991;

Beck, Katz and Alvarez, 1993; Beck and Katz, 1995; Western, 1998). Because of the short time

series (15 years), they included only one interaction term among 6 predictors and did not examine

time-varying effects.5 The data cover 16 OECD countries for the period of 1970 – 1984. The

dependent variable is the annual growth rate and independent variables cover political economic

covariates of economic growth.6

We examine the full interaction model with 21 (6 +
(
6
2

)
) predictors that include all pairwise

interactions.7 Our goal is to select important time-varying predictors of economic growth out of

many possible predictors via the posterior summarization of HMBB using the DSS method (Hahn

5The data are obtained from pcse package in R.
6The independent variables are as follows:

1. lagg1: The lagged growth rate

2. opengdp: weighted OECD demand measured by OECD growth rates

3. openex: weighted OECD export

4. openimp: weighted OECD import

5. leftc: The cabinet composition of left-leaning parties

6. central: The degree of labor organization encompassment is measured by summing standardized scores for
the density and centralization of union movements in each of the countries

7We demean the data by year to remove year fixed-effects. Country-wise demeaning is not feasible due to the
time invariant covariate (central).
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Figure 5: Transition of Latent States by the Number of Breaks: The year of 1979 is consistently detected as
a break point. Adding more than one break produces singleton states. The fully interacted Alvarez, Garrett
and Lange (1991) model is used for HMBB analysis.

and Carvalho, 2015). The DSS method is a hybrid Bayesian method to choose strong signals

from noisy data by optimizing the posterior mean with regard to an ℓ0 function. Its goal is to

find a compromise between prediction accuracy and inferential parsimony by considering variable

selection as a problem of posterior summarization. Following Hahn and Carvalho (2015), we write

the DSS loss function for HMBB estimates at regime m

L(γm) = argmin
γm

squared prediction loss︷ ︸︸ ︷
∥Xmβ∗

m −Xmγm∥22+
parsimony penalty︷ ︸︸ ︷

λ∥γm∥0 (4.3)

where Xmβ∗
m is the fitted value of HMBB at regime m. Then, we use the adaptive lasso method

to find γm (Zou, 2006).

First, the break number diagnostics using WAIC or the approximate log marginal likelihoods

indicate a strong sign of a single break in 1979. Adding more than one break produces singleton

states (i.e. latent states with only one observation) as shown in Figure 5. That is, models with

more than one break do not improve our substantive knowledge much from the one we obtain from

the one break model.

Next, we examine the post-selected predictors for each regime. The left panel of Figure 6 shows

DSS estimates of all 21 regression parameters. It is clear that most coefficients show dramatic

shifts toward zero after 1979. The right panel of Figure 6 zooms in left-party government-related

parameters, which are one of the key explanatory variables of Alvarez, Garrett and Lange (1991).

Strikingly, effects of left-party government-related parameters disappear after 1979. That is, direct

and indirect effects of government partisanship (measured by the cabinet composition of left-leaning

parties) existed only up until 1979. Thus, we can conclude that Alvarez, Garrett and Lange (1991)’s

original claim on the conditional effect of government partisanship on economic growth does not
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Figure 6: A Latent Regime Change and Regime-changing Covariate Effects in the Fully Interacted Alvarez,
Garrett and Lange (1991) Model

hold after 1979.8

5 Concluding Remarks

In this paper, we proposed a model-based approach to the change-point problem in regularized re-

gression analysis using Polson, Scott and Windle (2014)’s Bayesian bridge model and Chib (1998)’s

non-ergodic hidden Markov model. We presented HMBB as a principled statistical method for reg-

ularization and estimation of parameter changes in high dimensional regression analysis.

Our simulation studies show that our modified Bayesian bridge model outperforms other reg-

ularization methods such as the lasso, elastic net, and ridge models in various high-dimensional

data settings. In particular, when the underlying data generating model of high-dimensional data

involves temporal heterogeneity in parameter values, HMBB successfully identifies break points

and parameter changes while efficiently handling a large number of predictors. We also showed

how HMBB can be used to uncover time-varying nonlinear effects by applying HMBB to the

nonparametric regression model.

Our replication of Nunn and Qian (2014)’s study of the effect of US food aid on civil conflicts

showed that HMBB can help researchers identify heterogeneous causal effects in the framework

8Although this paper does not aim to explain why the effects disappear after 1979, we conjecture that the break
can be explained by a combination of factors such as the second oil shock, lingering effects of stagflation, and the
rise of right-party governments in OECD countries at the end of 1970s.
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of the instrumental variable regression analysis in large, long panel data (N = 125, T = 5 ∼
36, p = 352). HMBB helps researchers uncover unknown parameter heterogeneity in the first-stage

equation while accounting for numerous nuisance parameters. The replication of Alvarez, Garrett

and Lange (1991) how HMBB can detect a shift in regression parameters of an expanded model.

The original data set has small data (16 countries and 15 time series observations) and a small

number of covariates (6 covariates), which is a typical regression setup for social scientists. HMBB

allows researchers to fit a parameter-expanded model (in our case, a fully interacted model with 21

predictors) while accounting for time-varying effects of these expanded predictors. Although our

two examples are panel data in social sciences, HMBB can be used for the analysis of any type of

high dimensional longitudinal (or time series) data.

In our ongoing work, we extend HMBB into discrete response panel models. Another fruitful

application is to implement a changepoint detection algorithm using hidden Markov models in

two different Bayesian regularization methods. The current framework is based on the one-group

approach to parameter regularization and variable selection (Polson and Scott, 2010). Thus, it

would be straightforward to extend HMBB to the Bayesian lasso (Park and Casella, 2008; Hans,

2009), the horseshoe prior model (Carvalho, Polson and Scott, 2010), and Dirichlet-Laplace prior

(Bhattacharya et al., 2015). One drawback of the one-group approach is the lack of variable

selection property. In this sense, it would be fruitful to extend a changepoint detection algorithm

to the two-group approach such as the spike-and-slab prior models (Mitchell and Beauchamp, 1988;

George and McCulloch, 1993). However, these two-group models suffer from large computational

costs. In this context, recent innovations in the two-group approach such as the spike-and-slab lasso

prior model (Rocková and George, 2018) and the neuronized prior model (Shin and Liu, N.d.) can

lay down an efficient framework to compromise variable selection and changepoint detection within

a reasonable computation cost.
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