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Abstract

While a difference-in-differences (DID) design was originally developed with one pre-
and one post-treatment period, data from additional pre-treatment periods are often avail-
able. How can researchers improve the DID design with such multiple pre-treatment pe-
riods under what conditions? We first use potential outcomes to clarify three benefits of
multiple pre-treatment periods: (1) assessing the parallel trends assumption, (2) improv-
ing estimation accuracy, and (3) allowing for a more flexible parallel trends assumption.
We then propose a new estimator, double DID, which combines all the benefits through
the generalized method of moments and contains the two-way fixed effects regression as a
special case. We show that the double DID requires a weaker assumption about outcome
trends and is more efficient than existing DID estimators. We also generalize the double
DID to the staggered adoption design where different units can receive the treatment in
different time periods. We illustrate the proposed method with two empirical applications,
covering both the basic DID and staggered adoption designs. We offer an open-source R
package that implements the proposed methodologies.
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1 Introduction

Over the last few decades, social scientists have developed and applied various approaches

to make credible causal inference from observational data. One of the most popular is a

difference-in-differences (DID) design (Bertrand, Duflo, and Mullainathan 2004; Angrist and

Pischke 2008). When the outcome trend of the control group would have been the same as the

trend of the outcome in the treatment group in the absence of the treatment (known as the

parallel trends assumption), the DID design enables scholars to estimate causal effects even in

the presence of time-invariant unmeasured confounding (Abadie 2005). In its most basic form,

we compare treatment and control groups over two time periods — one before and the other

after the treatment assignment.

In practice, it is common to apply the DID method with additional pre-treatment periods.1

However, in contrast to the basic two-time-period case, there are a number of different ways

to analyze the DID design with multiple pre-treatment periods. One popular approach is to

apply the two-way fixed effects regression to the entire time periods and supplement it with

alternative model specifications by including time-trends or leads of the treatment variable to

assess possible violations of the parallel trends assumption. Another is to stick with the two-

time-period DID and limit the use of additional pre-treatment periods only to the assessment

of pre-treatment trends.2 This variation of approaches raises an important practical question:

how should analysts incorporate multiple pre-treatment periods into the DID design, and under

what assumptions? In Section 2, we begin by examining three benefits of multiple pre-treatment

periods using potential outcomes (Imbens and Rubin 2015): (1) assessing the parallel trends

assumption, (2) improving estimation accuracy, and (3) allowing for a more flexible parallel

trends assumption. While these benefits have been discussed in the literature, we revisit them

to clarify that each benefit requires different assumptions and estimators. As a result, in

practice, researchers tend to enjoy only a subset of the three benefits they can exploit from

multiple pre-treatment periods. While our literature review finds that more than 90% of papers

based on the DID design enjoy at least one of the three benefits, we also find that only 20% of

the papers enjoy all three benefits.

1. In our literature review of American Political Science Review and American Journal of Political Science

between 2015 and 2019, we found that about 63% of the papers that use the DID design have more than one

pre-treatment period. See Appendix A for details about our literature review.

2. For each approach, we provide examples in Appendix A.
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Our main contribution is to propose a new, simple estimator that achieves all three benefits

together. We use the generalized method of moments (GMM) framework (Hansen 1982) to

develop the double difference-in-differences (double DID). At its core, we combine two popular

DID estimators: the standard DID estimator, which relies on the canonical parallel-trends

assumptions, and the sequential DID estimator (e.g., Lee 2016; Mora and Reggio 2019), which

only requires that the change in the trends is the same across treatment and control groups

(what we call the parallel trends-in-trends assumption). While each estimator itself is not new,

the new combination of the two estimators via the GMM allows us to optimally exploit the

three benefits of multiple pre-treatment periods.

The proposed double DID approach makes several key methodological contributions. First,

we show that the proposed method achieves better theoretical properties than widely-used DID

estimators that constitute the double DID. Compared to the standard DID estimator and the

two-way fixed effects regression, the double DID has smaller standard errors (i.e., more efficient)

and is unbiased under a weaker assumption. While the former estimators require the parallel

trends assumption, the double DID only requires the parallel trends-in-trends assumption.

The double DID also improves upon the sequential DID estimator, which is inefficient when

the parallel trends assumption holds. By using the GMM theory, we show that the double

DID is more efficient than the sequential DID when the parallel trends assumption holds.

Therefore, our proposed GMM approach enables methodological improvement both in terms

of identification and estimation accuracy.

Second, and most importantly in practice, the double DID blends all the three benefits of

multiple pre-treatment periods within a single framework. Therefore, instead of using different

estimators for enjoying each benefit as required in existing methods, researchers can use the

double DID approach to exploit all the benefits. Given that only 20% of papers based on the

DID design currently enjoy all the three benefits, our proposed unified approach to optimally

exploit all the three benefits of multiple pre-treatment periods is essential in practice.

We also propose three extensions of our double DID estimator. First, we develop the

double DID regression, which can incorporate pre-treatment observed covariates to make the

DID design more robust and efficient (Section 3.3.1). Second, we allow for any number of pre-

and post-treatment periods (Section 3.3.2). While the parallel trends-in-trends assumption can

allow for time-varying unmeasured confounders that linearly change over time, we show how

to further relax the assumption by accounting for even more flexible forms of time-varying
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unmeasured confounding when we have more pre-treatment periods. Because our proposed

methods allow for any number of post-treatment periods, researchers can also estimate not

only short-term causal effects but also longer-term causal effects. Finally, we generalize our

double DID estimator to the staggered adoption design where different units can receive the

treatment in different time periods (Section 4). This design is increasingly more popular in

political science and social sciences (e.g., Ben-Michael, Feller, and Rothstein 2019; Athey and

Imbens 2021; Marcus and Sant’Anna 2021).

We offer a companion R package DIDdesign that implements the proposed methods. We

illustrate our proposed methods through two empirical applications. In Section 3.4, we revisit

Malesky, Nguyen, and Tran (2014), which study how the abolition of elected councils affects

local public services. This serves as an example of the basic DID design where treatment assign-

ment happens only once. In Appendix H.2, we reanalyze Paglayan (2019), which examines the

effect of granting collective bargaining rights to teacher’s unions on educational expenditures

and teacher’s salaries. This is an example of the staggered adoption design.

Related Literature. This paper builds on the large literature of time-series cross-sectional

data. Generalizing the well-known case of two periods and two groups (e.g., Abadie 2005),

recent papers use potential outcomes to unpack the nonparametric connection between the

DID and two-way fixed effects regression estimators, thereby proposing extensions to relax

strong parametric and causal assumptions (e.g., Strezhnev 2018; Imai and Kim 2019; Callaway

and Sant’Anna 2020; Athey and Imbens 2021; Goodman-Bacon 2021; Imai and Kim 2021). Our

paper also uses potential outcomes to clarify nonparametric foundations on the use of multiple

pre-treatment periods. The key difference is that, while this recent literature mainly considers

identification under the parallel trends assumption, we study both estimation accuracy and

identification under more flexible assumptions of trends. We do so both in the basic DID setup

and in the staggered adoption design.

Another class of popular methods is the synthetic control method (Abadie, Diamond, and

Hainmueller 2010) and their recent extensions (e.g., Xu 2017; Ben-Michael, Feller, and Roth-

stein 2019; Pang, Liu, and Xu 2021) that estimate a weighted average of control units to

approximate a treated unit. As carefully noted in those papers, such methodologies require

long pre-treatment periods to accurately estimate a pre-treatment trajectory of the treated unit

(Abadie, Diamond, and Hainmueller 2010); for example, Xu (2017) recommends collecting more

than ten pre-treatment periods. In contrast, the proposed double DID can be applied as long
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as there is more than one pre-treatment period, and is better suited when there are a small to

moderate number of pre-treatment periods.3 However, we also show in Appendix H.2 that the

double DID can achieve performance comparable to variants of synthetic control methods even

when there are a large number of pre-treatment periods. We offer additional discussions about

relationships between our proposed approach and synthetic control methods in Appendix B.

2 Three Benefits of Multiple Pre-treatment Periods

The difference-in-differences (DID) design is one of the most widely used methods to make

causal inference from observational studies. The basic DID design consists of treatment and

control groups measured at two time periods, before and after the treatment assignment. While

the basic DID design only requires data from one post- and one pre-treatment period, addi-

tional pre-treatment periods are often available. Unfortunately, however, assumptions behind

different uses of multiple pre-treatment periods have often remained unstated.

In this section, we use potential outcomes to discuss three well-known practical benefits

of multiple pre-treatment periods: (1) assessing the parallel trends assumption, (2) improving

estimation accuracy, and (3) allowing for a more flexible parallel trends assumption. This

section serves as a methodological foundation for developing a new approach in Sections 3

and 4.

As our running example, we focus on a study of how the abolition of elected councils

affects local public services. Malesky, Nguyen, and Tran (2014) use the DID design to examine

the effect of recentralization efforts in Vietnam. The abolition of elected councils, the main

treatment of interest, was implemented in 2009 in about 12% of all the communes, which are

the smallest administrative units that the paper considers. For each commune, a variety of

outcomes related to public services, such as the quality of infrastructure, were measured in

2006, 2008, and 2010. With this data, Malesky, Nguyen, and Tran (2014) aim to estimate the

causal effect of abolishing elected councils on various measures of local public services.

2.1 Setup

To begin with, let Dit denote the binary treatment for unit i in time period t so that Dit = 1

if the unit is treated in time period t, and Dit = 0 otherwise. In this section, we consider

two pre-treatment time periods t ∈ {0, 1} and one post-treatment period t = 2. We choose

3. In our literature review, we found that most DID applications have less than 10 pre-treatment periods,

and the median number of pre-treatment periods is 3.5. See Appendix A for more details.
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this setup here because it is sufficient for examining benefits of multiple pre-treatment peri-

ods, but we also generalize our methods to an arbitrary number of pre- and post- treatment

periods (Section 3.3.2), and to the staggered adoption design (Section 4). In our example,

two pre-treatment periods are 2006 and 2008, and one post-treatment period is 2010. Thus,

the treatment group receives the treatment only at time t = 2; Di0 = Di1 = 0 and Di2 = 1,

whereas units in the control group never gets treated Di0 = Di1 = Di2 = 0. We refer to the

treatment group as Gi = 1 and the control group as Gi = 0. Outcome Yit is measured at time

t ∈ {0, 1, 2}. In addition to panel data where the same units are measured over time, the DID

design accommodates repeated cross-sectional data, in which different communes are sampled

at three time periods.

To define causal effects, we rely on the potential outcomes framework (Imbens and Rubin

2015). For each time period, Yit(1) represents the quality of infrastructure that commune i

would achieve in time period t if commune i had abolished elected councils. Yit(0) is similarly

defined. For an individual commune, the causal effect of abolishing elected councils on the

quality of infrastructure in time period t is Yit(1)− Yit(0). As the treatment is assigned in the

second time period, we are interested in estimating a causal effect at time t = 2, and a causal

effect of interest is formally defined as Yi2(1)− Yi2(0).

In the DID design, we are interested in estimating the average treatment effect for treated

units (ATT) (Angrist and Pischke 2008):

τ = E[Yi2(1)− Yi2(0) | Gi = 1], (1)

where the expectation is over units in the treatment group Gi = 1.

DID with One Pre-Treatment Period

Before we discuss benefits of multiple pre-treatment periods from Section 2.2, we briefly review

the DID with one pre-treatment period to fix ideas for settings with multiple pre-treatment

periods.

In the basic DID design, researchers can identify the ATT based on the widely-used as-

sumption of parallel trends — if the treatment group had not received the treatment in the

second period, its outcome trend would have been the same as the trend of the outcome in the

control group. (Angrist and Pischke 2008).

Assumption 1 (Parallel Trends).

E[Yi2(0) | Gi = 1]− E[Yi1(0) | Gi = 1] = E[Yi2(0) | Gi = 0]− E[Yi1(0) | Gi = 0]. (2)
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The left-hand side of equation (2) is the trend in outcomes for the treatment group Gi = 1,

and the right is the one for the control group Gi = 0. Under the parallel trends assumption,

we estimate the ATT via the difference-in-differences estimator.

τ̂DID =

(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)
, (3)

where n1t and n0t are the numbers of units in the treatment and control groups at time

t ∈ {1, 2}, respectively.

When we analyze panel data, we can compute τ̂DID nonparametrically via a linear regres-

sion with unit and time fixed effects. This numerical equivalence in the two-time-period case

is often used to justify the two-way fixed effects regression as the DID design (Angrist and Pis-

chke 2008). We discuss additional results on nonparametric equivalence between a regression

estimator and the DID estimator in Appendix C.1.

2.2 Benefit 1: Assessing Parallel Trends Assumption

We now consider how researchers can exploit multiple pre-treatment periods, while clarifying

necessary underlying assumptions.

The first and the most common use of multiple pre-treatment periods is to assess the

identification assumption of parallel trends. As the validity of the DID design rests on this

assumption, it is critical to evaluate its plausibility in any application. However, the parallel

trends assumption itself involves counterfactual outcomes, and thus analysts cannot empirically

test it directly. Instead, we often investigate whether trends for treatment and control groups

are parallel in pre-treatment periods as a placebo test (Angrist and Pischke 2008).

Specifically, researchers often estimate the DID for the pre-treatment periods:(∑
i : Gi=1 Yi1

n11
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi1

n01
−
∑

i : Gi=0 Yi0

n00

)
. (4)

We then check whether the DID estimate on pre-treatment periods is statistically distinguish-

able from zero. For example, we can apply the DID estimator to 2006 and 2008 as if 2008 were

the post-treatment period, and assess whether the estimate would be close to zero. In Figure 1,

a DID estimate on the pre-treatment periods would be close to zero for the left panel, while it

would be negative for the right panel where two groups have different pre-treatment trends. In

Appendix C.4, we show that a robustness check with leads effects (Angrist and Pischke 2008),

which incorporates leads of the treatment variable into the two-way fixed effects regression

and checks whether their coefficients are zero, is equivalent to this DID on the pre-treatment

periods.
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Extended Parallel Trends
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Figure 1: Parallel Pre-treatment Trends (left) and Non-Parallel Pre-treatment Trends (right).

The basic idea behind this test is that if trends are parallel from 2006 to 2008, it is more

likely that the parallel trends assumption holds for 2008 and 2010. Hence, instead of consid-

ering parallel trends only from 2008 to 2010, the test evaluates the two related parallel trends

together. By doing so, this popular test tries to make the DID design falsifiable.

Importantly, this approach does not test the parallel trends assumption itself (Assump-

tion 1), which is untestable due to counterfactual outcomes. Instead, it tests the extended

parallel trends assumption — the parallel trends hold for pre-treatment periods, from t = 0 to

t = 1, as well as from a pre-treatment period t = 1 to a post-treatment period t = 2:

Assumption 2 (Extended Parallel Trends).
E[Yi2(0) | Gi = 1]− E[Yi1(0) | Gi = 1] = E[Yi2(0) | Gi = 0]− E[Yi1(0) | Gi = 0]

E[Yi1(0) | Gi = 1]− E[Yi0(0) | Gi = 1] = E[Yi1(0) | Gi = 0]− E[Yi0(0) | Gi = 0]

(5)

The first line of the extended parallel trends assumption is the same as the standard parallel

trends assumption, and the second line is the parallel trends for pre-treatment periods. Be-

cause outcome trends are observable in pre-treatment periods, the test of pre-treatment trends

(equation (4)) directly tests this assumption.

It is important to emphasize that, even if we find the DID estimate on pre-treatment periods

is close to zero, we cannot confirm the extended parallel trends assumption (Assumption 2) or

the parallel trends assumption (Assumption 1). This is because it is still possible that trends

between t = 1 (pre-treatment) and t = 2 (post-treatment) are not parallel. Therefore, it is

always important to substantively justify the parallel trends assumption in addition to using

this statistical test based on pre-treatment trends.
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2.3 Benefit 2: Improving Estimation Accuracy

As we discussed above, many existing DID studies that utilize the test of pre-treatment trends

can be viewed as the DID design with the extended parallel trends assumption. However, this

extended parallel trends assumption is often made implicitly, and thus, it is used only for as-

sessing the parallel trends assumption. Fortunately, if the extended parallel trends assumption

holds, we can also estimate the ATT with higher accuracy, resulting in smaller standard errors.

This additional benefit becomes clear by simply restating the extended parallel trends

assumption as follows.
E[Yi2(0) | Gi = 1]− E[Yi1(0) | Gi = 1] = E[Yi2(0) | Gi = 0]− E[Yi1(0) | Gi = 0]

E[Yi2(0) | Gi = 1]− E[Yi0(0) | Gi = 1] = E[Yi2(0) | Gi = 0]− E[Yi0(0) | Gi = 0].

(6)

Under the extended parallel trends assumption, there are two natural DID estimators for

the ATT.

τ̂DID =

(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)
,

τ̂DID(2,0) =

(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi0

n00

)
. (7)

Under the extended parallel trends assumption, both estimators are unbiased and consistent

for the ATT. Thus, we can increase estimation accuracy by combining the two estimators, for

example, simply averaging them.

τ̂e-DID =
1

2
τ̂DID +

1

2
τ̂DID(2,0). (8)

Intuitively, this extended DID estimator is more efficient because we have more observations

to estimate counterfactual outcomes for the treatment group E[Yi2(0) | Gi = 1].

In the panel data settings, we show that this extended DID estimator τ̂e-DID is equivalent

to the two-way fixed effects estimator fitted to the three periods t ∈ {0, 1, 2}.

Yit ∼ αi + δt + βDit, (9)

where αi is a unit fixed effect, δt is a time fixed effect, and a coefficient of the treatment

variable β is numerically equal to τ̂e-DID. We also present more general results about non-

parametric relationships between the extended DID and the two-way fixed effects estimator in

Appendix C.2.
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2.4 Benefit 3: Allowing For A More Flexible Parallel Trends Assumption

In this section, we consider scenarios in which the extended parallel trends assumption may not

be plausible. Multiple pre-treatment periods are also useful in accounting for some deviation

from the parallel trends assumption. We discuss a popular generalization of the difference-in-

differences estimator, a sequential DID estimator, which removes bias due to certain violations

of the parallel trends assumption (e.g., Lee 2016; Mora and Reggio 2019). We clarify an

assumption behind this simple method and relate it to the parallel trends assumption.

To introduce the sequential DID estimator, we begin with the extended parallel trends

assumption. As we described in Section 2.2, when the extended parallel trends assumption

holds, a DID estimator applied to pre-treatment periods t = 0 and t = 1 should be zero in

expectation. In contrast, when trends of treatment and control groups are not parallel, a DID

estimate on pre-treatment periods would be non-zero. The sequential DID estimator uses this

DID estimate from pre-treatment periods to adjust for bias in the standard DID estimator.

In particular, it subtracts the DID estimator on pre-treatment periods from the standard DID

estimator that uses pre- and post-treatment periods t = 1 and t = 2.

τ̂s-DID =

{(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)}
−
{(∑

i : Gi=1 Yi1

n11
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi1

n01
−
∑

i : Gi=0 Yi0

n00

)}
, (10)

where the first four terms are equal to the standard DID estimator (equation (3)), and the

last four terms are the DID estimator applied to pre-treatment periods t = 0 and t = 1

(equation (4)).

This sequential DID estimator requires the parallel trends-in-trends assumption — in the

absence of the treatment, the change in the outcome trends of the treatment group is equal to

the change in the outcome trends of the control group (e.g., Mora and Reggio 2019). While the

parallel trends assumption requires that the outcome trends themselves are the same across

the treatment and control groups, the parallel trends-in-trends assumption only requires the

change in trends over time to be the same. Formally, the parallel trends-in-trends assumption

can be written as follows.

Assumption 3 (Parallel Trends-in-Trends).

{
E[Yi2(0) | Gi = 1]− E[Yi1(0) | Gi = 1]

}︸ ︷︷ ︸
Trend of the treatment group from t = 1 to t = 2

−
{
E[Yi1(0) | Gi = 1]− E[Yi0(0) | Gi = 1]

}︸ ︷︷ ︸
Trend of the treatment group from t = 0 to t = 1
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Extended Parallel Trends Parallel Trends−in−Trends Both are Violated

Trend of Treatment Group
(−2, −1)

Trend of Control Group
(−2, −1)

Trend of Treatment Group
(−2, −1)

Trend of Control Group
(−3.5, −2.5)

Trend of Treatment Group
(−2, −1)

Trend of Control Group
(1, −3)

Figure 2: Comparing Extended Parallel Trends and Parallel Trends-in-Trends Assumptions.
Note: Below each panel, we report the trends of the control potential outcomes for the treat-
ment and control groups. The first and second elements show the outcome trends (from t = 0
to t = 1) and (from t = 1 to t = 2), respectively. The extended parallel trends assumption (left
panel) means that the outcome trends are the same across the treatment and control groups for
both (from t = 0 to t = 1) and (from t = 1 to t = 2). The parallel trends-in-trends assumption
(middle panel) only requires its change over time is the same across the treatment and control
groups; (−1)− (−2) = (−2.5)− (−3.5) = 1. Both assumptions are violated in the right panel.

=
{
E[Yi2(0) | Gi = 0]− E[Yi1(0) | Gi = 0]

}︸ ︷︷ ︸
Trend of the control group from t = 1 to t = 2

−
{
E[Yi1(0) | Gi = 0]− E[Yi0(0) | Gi = 0]

}︸ ︷︷ ︸
Trend of the control group from t = 0 to t = 1

.(11)

Here, the left-hand side represents how the outcome trends of the treatment group change

between (from t = 0 to t = 1) and (from t = 1 to t = 2). The right-hand side quantifies the

same change in the outcome trends for the control group.

We also emphasize an alternative way to interpret the parallel trends-in-trends assumption.

Unlike the parallel trends assumption that assumes the time-invariant unmeasured confound-

ing, the parallel trends-in-trends assumption can account for linear time-varying unmeasured

confounding — unobserved confounding increases or decreases over time but with some constant

rate. We provide examples and formal justification of this interpretation in Appendix C.3.3.

Figure 2 visually illustrates that the parallel trends-in-trends assumption holds even when

the trends of the treatment and control groups are not parallel, as long as its change over time

is the same. Under the parallel trends-in-trends assumption, the sequential DID estimator is

unbiased and consistent for the ATT. Importantly, the extended parallel trends assumption is

stronger than the parallel trends-in-trends assumption, and thus, the sequential DID estimator

is unbiased and consistent for the ATT under the extended parallel trends assumption as well.

We demonstrate that a common robustness check of including group- or unit-specific time
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trends (Angrist and Pischke 2008) is nonparametrically equivalent to the sequential DID esti-

mator (see Appendix C.3). Within the potential outcomes framework, we clarified that these

common techniques are justified under the parallel trends-in-trends assumption.

3 Double Difference-in-Differences

We saw in the previous section that multiple pre-treatment periods provide the three related

benefits. We have clarified that each benefit requires different assumptions and estimators, and

as a result, in practice, researchers tend to enjoy only a subset of the three benefits. In this

section, we propose a new, simple estimator, which we call the double difference-in-differences

(double DID), that blends all the three benefits of multiple pre-treatment periods in a single

framework. Here, we introduce the double DID with settings with two pre-treatment periods.

We also provide three extensions. First, we propose the double DID regression to include

observed pre-treatment covariates (Section 3.3.1). Second, we generalize the proposed method

to any number of pre- and post-treatment periods in the DID design (Section 3.3.2). Finally,

we extend it to the staggered adoption design, where the timing of the treatment assignment

can vary across units (Section 4).

3.1 Double DID via Generalized Method of Moments

We propose the double DID estimator within a framework of the generalized method of mo-

ments (GMM) (Hansen 1982). In particular, we combine the standard DID estimator and the

sequential DID estimator via the GMM:

τ̂d-DID = argmin
τ

(
τ − τ̂DID
τ − τ̂s-DID

)>
W

(
τ − τ̂DID
τ − τ̂s-DID

)
(12)

where W is a weight matrix of dimension 2× 2.

The important property of the proposed double DID estimator is that it contains all of

the popular estimators that we considered in the previous sections as special cases. Table 1

illustrates that a particular choice of the weight matrix W recovers the standard DID, the

extended DID, and the sequential DID estimators, respectively.

Using the GMM theory, we can estimate the optimal weight matrix Ŵ such that asymptotic

standard errors of the double DID estimator are minimized, which we describe in detail in

Section 3.1.2. Therefore, users do not need to manually pick the weight matrix W.

We emphasize that the double DID estimator provides a unifying framework to consider

identification assumptions and to estimate treatment effects within the framework of the GMM.
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Standard DID Extended DID Sequential DID

Weight Matrix
1 0

0 0

 3 0

0 −1

 0 0

0 1


W

Table 1: Double DID as Generalization of Popular DID Estimators.

The double DID estimator proceeds with the following two steps.

3.1.1 Step 1: Assessing Underlying Assumptions

The first step is to assess the underlying assumptions. We use this first step to adaptively choose

the weight matrixW in the second step. In this first step, we check the extended parallel trends

assumption by applying the DID estimator on pre-treatment periods (equation (4)) and testing

whether the estimate is statistically distinguishable from zero at a conventional level. To take

into account correlated errors, we cluster standard errors at the level of treatment assignment.

Importantly, this step of the double DID can be viewed as the over-identification test in

the GMM framework (Hansen 1982), which tests whether all the moment conditions are valid.

In the context of the double DID estimator, we assume that the sequential DID estimator is

correctly specified and test the null hypothesis that the standard DID estimator is correctly

specified. Then, the null hypothesis of the over-identification test becomes exactly the same as

testing whether an estimate of the DID estimator applied to pre-treatment periods is equal to

zero.

Equivalence Approach. We note that the standard hypothesis testing approach has a risk

of conflating evidence for parallel trends and statistical inefficiency. For example, when sample

size is small, even if pre-treatment trends of the treatment and control groups differ, a test of

the difference might not be statistically significant due to large standard error, and analysts

might “pass” the pre-treatment-trends test. To mitigate such concerns, we also incorporate an

equivalence approach (e.g., Hartman and Hidalgo 2018) in which we evaluate the null hypothesis

that trends of two groups are not parallel in pre-treatment periods.4 By using this approach,

researchers can “pass” the pre-treatment-trends test only when estimated pre-treatment trends

of the two groups are similar with high accuracy, thereby avoiding the aforementioned common

mistake. To facilitate the interpretation of the equivalence confidence interval, we report the

4. Liu, Wang, and Xu (2020) propose a similar test for a different class of estimators, what they refer to as

“counterfactual estimators.”
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standardized interval, which can be interpreted as the standard deviation from the baseline

control mean. We provide technical details in Appendix F and provide an empirical example

in Section 3.4.

3.1.2 Step 2: Estimation of the ATT

The second step is estimation of the ATT. When the extended parallel trends assumption

is plausible, we estimate the optimal weight matrix Ŵ building on the theory of the efficient

GMM (Hansen 1982). Specifically, the optimal weight matrix that minimizes the variance of the

estimator is given by the inverse of the variance-covariance matrix of the two DID estimators:

Ŵ =

 V̂ar(τ̂DID) Ĉov(τ̂DID, τ̂s-DID)

Ĉov(τ̂DID, τ̂s-DID) V̂ar(τ̂s-DID)

−1 (13)

While the double DID approach can take any weight matrix, this optimal weight matrix allows

us to compute the weighted average of the standard DID and the sequential DID estimator

such that the resulting variance is the smallest. In particular, when this optimal weight matrix

is used, the double DID estimator can be explicitly written as

τ̂d-DID = w1τ̂DID + w2τ̂s-DID (14)

where w1 + w2 = 1, and

w1 =
V̂ar(τ̂s-DID)− Ĉov(τ̂DID, τ̂s-DID)

V̂ar(τ̂DID) + V̂ar(τ̂s-DID)− 2Ĉov(τ̂DID, τ̂s-DID)
,

w2 =
V̂ar(τ̂DID)− Ĉov(τ̂DID, τ̂s-DID)

V̂ar(τ̂DID) + V̂ar(τ̂s-DID)− 2Ĉov(τ̂DID, τ̂s-DID)
.

By pooling information from both the standard DID and sequential DID, the asymptotic

variance of the double DID is smaller than or equal to variance of either the standard and

sequential DIDs. This is analogous to Bayesian hierarchical models where pooling information

from multiple groups makes estimation more accurate than separate estimation based on each

group.

In addition, because the extended DID is a special case of the double DID (as described

in Table 1), the asymptotic variance of the double DID is also smaller than or equal to vari-

ance of the extended DID. Therefore, Var(τ̂d-DID) ≤ min(Var(τ̂DID),Var(τ̂s-DID),Var(τ̂e-DID)).

We provide the proof in Appendix D.

Following Bertrand, Duflo, and Mullainathan (2004), we estimate the variance-covariance

matrix of τ̂DID and τ̂s-DID via block-bootstrap where the block is taken at the level of treatment
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assignment. Specifically, we obtain a pair of two estimators {τ̂ (b)DID, τ̂
(b)
s-DID} for b = 1, . . . , B

with B number of bootstrap iterations, and compute the empirical variance-covariance matrix.

Given an estimate of the weight matrix (equation (13)), we obtain the double DID estimate as

a weighted average (equation (14)). We can obtain the variance estimate of τ̂d-DID by following

the standard efficient GMM variance formula:

V̂ar(τ̂d-DID) = (1>Ŵ1)−1,

where 1 is a two-dimensional vector of ones.

Remark. Under the extended parallel trends assumption, both the standard DID and the

sequential DID estimator are consistent for the ATT, and thus, any weighted average is a

consistent estimator. But the optimal weight matrix (equation (13)) chooses the most efficient

estimator among all consistent estimators. As we clarify more below, we do not use the

weighted average of the standard DID and the sequential DID when the extended parallel

trends assumption is violated.

When only the parallel trends-in-trends assumption is plausible, the double DID contains

one moment condition τ − τ̂s-DID = 0, and thus, it reduces to the sequential DID estimator.

This is equivalent to choosing the weight matrix W with W11 =W12 =W21 = 0 and W22 = 1

(the third column in Table 1).

When both assumptions are implausible, there is no credible estimator for the ATT without

making further stringent assumptions. However, when there are more than two pre-treatment

periods, researchers can also use the proposed generalized K-DID (discussed in Section 3.3.2)

to further relax the parallel trends-in-trends assumption.

3.2 Double DID Enjoys Three Benefits

The proposed double DID estimator naturally enjoys the three benefits of multiple pre-treatment

periods within a unified framework.

1. Assessing Underlying Assumptions The double DID incorporates the assessment of

underlying assumptions in its first step as the over-identification test. When the trends in

pre-treatment periods are not parallel, researchers have to pay the most careful attention to

research design and use domain knowledge to assess the parallel trends-in-trends assumption.

2. Improving Estimation Accuracy When the extended parallel trends assumption holds,

researchers can combine two DIDs with equal weights (i.e., the extended DID estimator, which
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is numerically equivalent to the two-way fixed effects regression) to increase estimation accuracy

(Section 2.3). In this setting, the double DID further improves estimation accuracy because it

selects the optimal weights as the GMM estimator. In Section G, we use simulations to show

that the double DID achieves smaller standard errors than the extended DID estimator.

3. Allowing For A More Flexible Parallel Trends Assumption Under the parallel

trends-in-trends assumption, the double DID estimator converges to the sequential DID esti-

mator. However, when the extended parallel trends assumption holds, the double DID uses

optimal weights and is not equal to the sequential DID. Thus, the double DID estimator avoids

a dilemma of the sequential DID — it is consistent under a weaker assumption of the parallel

trends-in-trends but is less efficient when the extended parallel trends assumption holds. By

naturally changing the weight matrix in the GMM framework, the double DID achieves high

estimation accuracy under the extended parallel trends assumption and, at the same time, al-

lows for more flexible time-varying unmeasured confounding under the parallel trends-in-trends

assumption.

3.3 Extensions

3.3.1 Double DID Regression

Like other DID estimators, the double DID estimator has a nice connection to a regression

approach. We propose the double DID regression with which researchers can include other

pre-treatment covariates Xit to make the DID design more robust and efficient. We provide

technical details in Appendix E.1.

3.3.2 Generalized K-Difference-in-Differences

We generalize the proposed method to any number of pre- and post-treatment periods in Ap-

pendix E.2, which we callK-difference-in-differences (K-DID). This generalization has two cen-

tral benefits. First, it enables researchers to use longer pre-treatment periods to allow for even

more flexible forms of unmeasured time-varying confounding beyond the linear time-varying

unmeasured confounding under the parallel trends-in-trends assumption (Assumption 3). K-

DID allows for time-varying unmeasured confounding that follows a (K−1)th order polynomial

function when researchers have K pre-treatment periods. We can view the double DID as a

special case of K-DID because in the double DID we have K = 2 pre-treatment periods, and

it can allow for unmeasured confounding that follows (2− 1 = 1)st order polynomial function

(i.e., a linear function).
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Second, we also allow for any number of post-treatment periods so that researchers can esti-

mate not only short-term causal effects but also longer-term causal effects. This generalization

can be crucial in many applications because treatment effects might not have an immediate

impact on the outcome.

3.4 Empirical Application

Malesky, Nguyen, and Tran (2014) utilize the basic DID design to study how the abolition of

elected councils affects local public services in Vietnam. To estimate the causal effects of the

institutional change, the original authors rely on data from 2008 and 2010, which are before

and after the abolition of elected councils in 2009. Then, they supplement the main analysis

by assessing trends in pre-treatment periods from 2006 to 2008. In this section, we apply the

proposed method and illustrate how to improve this basic DID design.

Although Malesky, Nguyen, and Tran (2014) employ the exact same DID design to all of the

thirty outcomes they consider, each outcome might require different assumptions, as noted in

the original paper. Here, we focus on reanalyzing three outcomes that have different patterns of

pre-treatment periods. By doing so, we clarify how researchers can use the double DID method

to transparently assess underlying assumptions and employ appropriate DID estimators under

different settings. We provide an analysis of all thirty outcomes in Appendix H.1.

3.4.1 Visualizing and Assessing Underlying Assumptions

The first step of the DID design is to visualize trends of treatment and control groups. Figure 3

shows trends of three different outcomes: “Education and Cultural Program,” “Tap Water,” and

“Agricultural Center.”5 Although the original analysis uses the same DID design for all of them,

they have distinct trends in the pre-treatment periods. The first outcome of “Education and

Cultural Program” has parallel trends in pre-treatment periods. For the other two outcomes,

trends do not look parallel in either of the cases. While the trends for the second outcome

(“Tap Water”) have similar directions, trends for the third outcome (“Agricultural Center”)

have opposite signs. This visualization of trends serves as a transparent first step to assess the

underlying assumptions necessary for the DID estimation.

The next step is to formally assess underlying assumptions. As in the original study, it

is common to incorporate additional covariates to make the parallel trends assumption more

plausible. Based on detailed domain knowledge, Malesky, Nguyen, and Tran (2014) include

5. See Appendix H.1 for definitions.
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Figure 3: Visualizing Trends of Treatment and Control Groups. Note: We report trends for
the treatment group (black solid line with solid circles) and the control group (gray dashed
line with hollow circles). Two pre-treatment periods are 2006 and 2008. One post-treatment
period, 2010, is indicated by the gray shaded area.

four control variables: area size of each commune, population size, whether national-level city

or not, and regional fixed effects. Thus, we assess the conditional extended parallel trends

assumption by fitting the DID regression to pre-treatment periods from 2006 to 2008, where

Xit includes the four control variables. If the conditional extended parallel trends assumption

holds, estimates of the DID regression on pre-treatment trends should be close to zero.

While a traditional approach is to assess whether estimates are statistically distinguishable

from zero with the conventional 5% or 10% level, we also report results based on an equiva-

lence approach that we recommend in Section 3. Specifically, we compute the 95% standardized

equivalence confidence interval, which quantifies the smallest equivalence range supported by

the observed data (Hartman and Hidalgo 2018). In the context of this application, the equiv-

alence confidence interval is standardized based on the mean and standard deviation of the

control group in 2006. For example, if the 95% standardized equivalence confidence interval

is [−ν, ν], this means that the equivalence test rejects the hypothesis that the DID estimate

(standardized with respect to the baseline control outcome) on pre-treatment periods is larger

than ν or smaller than −ν at the 5% level. Thus, the conditional extended parallel trends

assumption is more plausible when the equivalence confidence interval is shorter.

The results are summarized in Table 2. Standard errors are computed via block-bootstrap

at the district level, where we take 2000 bootstrap iterations. For the first outcome, as the

graphical presentation in Figure 3 suggests, a statistical test suggests that the extended parallel

trends assumption is plausible.

For the second outcome, the test of the parallel trends reveals that the parallel trends
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Estimate Std. Error p-value 95% Std. Equivalence CI

Education and
Cultural Program

−0.007 0.096 0.940 [−0.166, 0.166]

Tap Water 0.166 0.083 0.045 [−0.302, 0.302]

Agricultural Center 0.198 0.082 0.015 [−0.332, 0.332]

Table 2: Assessing Underlying Assumptions Using the Pre-treatment Outcomes. Note: We
evaluate the conditional extended parallel trends assumption for three different outcomes. The
table reports DID estimates on pre-treatment trends, standard errors, p-values, and the 95%
standardized equivalence confidence intervals.

assumption is less plausible for this outcome than for the first outcome. Finally, for the

third outcome, both traditional and equivalence approaches provide little evidence for parallel

trends, as graphically clear in Figure 3. Although we only have two pre-treatment periods

as in the original analysis, if more than two pre-treatment periods are available, researchers

can assess the extended parallel trends-in-trends assumption in a similar way by applying the

sequential DID estimator to pre-treatment periods. Upon assessing the underlying parallel

trends assumptions, we now proceed to estimation of the ATT via the double DID.

3.4.2 Estimating Causal Effects

Within the double DID framework, we select appropriate DID estimators after the empirical

assessment of underlying assumptions. For the first outcome, diagnostics in the previous section

suggest that the extended parallel trends assumption is plausible. In such settings, the double

DID is expected to produce similar point estimates with smaller standard errors compared

to the conventional DID estimator. The first plot of Figure 4 clearly shows this pattern. In

the figure, we report point estimates as well as 90% confidence intervals following the original

paper (see Figure 3 in Malesky, Nguyen, and Tran 2014). Using the standard DID estimator,

the original estimate of the ATT on “Education and Cultural Program” was 0.084 (90% CI

= [−0.006, 0.174]). Using the double DID estimator, an estimate is instead 0.082 (90% CI =

[0.001, 0.163]). By using the double DID estimator, we shrink standard errors by about 10%.

Although we only have two pre-treatment periods here, when there are more pre-treatment

periods, efficiency gain of the double DID can be even larger.

For the second outcome, we did not have enough evidence to support the extended parallel

trends assumption. Thus, instead of using the standard DID as in the original analysis, we
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Figure 4: Estimating Causal Effects of Abolishing Elected Councils. Note: We compare
estimates from the standard DID and the proposed double DID.

rely on the parallel trends-in-trends assumption. In this case, the double DID estimates the

ATT by allowing for linear time-varying unmeasured confounding in contrast to the standard

DID that assumes constant unmeasured confounders. The second plot of Figure 4 shows the

important difference between the two methods. While the standard DID estimates is −0.078

(90% CI = [−0.169, 0.012]), the double DID estimate is −0.119 (90% CI = [−0.225,−0.012]).

Given that the extended parallel trends assumption is not plausible, this result suggests that

the standard DID suffers from substantial bias (the bias of 0.04 corresponds to more than 50%

of the original point estimate). By incorporating non-parallel pre-treatment trends, the double

DID shows that the original DID estimate was underestimated by a large amount.

Finally, for the third outcome, the previous diagnostics suggest that the extended parallel

trends assumption is implausible. It is possible to use the double DID under the parallel

trends-in-trends assumption. However, trends of treatment and control groups have opposite

signs, implying the double DID estimates are highly sensitive to the parallel trends-in-trends

assumption. Given that the parallel trends-in-trends assumption is also difficult to justify here,

there is no credible estimator of the ATT without making additional stringent assumptions.

While we focused on the three outcomes here, the double DID improves upon the standard

DID in a similar way for the other outcomes as well (see Appendix H.1).
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4 Staggered Adoption Design

In this section, we extend the proposed double DID estimator to the staggered adoption design

where the timing of the treatment assignment can vary across units (Strezhnev 2018; Ben-

Michael, Feller, and Rothstein 2019; Athey and Imbens 2021).

4.1 The Setup and Causal Quantities of Interest

In the staggered adoption (SA) design, different units can receive the treatment in different time

periods. Once they receive the treatment, they remain exposed to the treatment afterward.

Therefore, Dit = 1 if Dim = 1 where m < t. We can thus summarize information about the

treatment assignment by the timing of the treatment Ai where Ai ≡ min {t : Dit = 1}. When

unit i never receives the treatment until the end of time T , we let Ai = ∞. For example, in

many applications where researchers are interested in the causal effect of state- or local-level

policies, units adopt policies in different time points and remain exposed to such policies once

they introduce the policies. In Appendix H.2, we provide its example based on Paglayan (2019).

See Figure 5 for visualization of the SA design.

Following the recent literature on the SA design, we make two standard assumptions in the

SA design: no anticipation assumption and invariance to history assumption (Imai and Kim

2019; Athey and Imbens 2021). This implies that, for unit i in period t, the potential outcome

Yit(1) represents the outcome of unit i that would realize in period t if unit i receives the

treatment at or before period t. Similarly, Yit(0) represents the outcome of unit i that would

realize in period t if unit i does not receive the treatment by period t. Finally, we generalize

group indicator G as follows.

Git =


1 if Ai = t

0 if Ai > t

−1 if Ai < t

(15)

where Git = 1 represents units who receive the treatment at time t, and Git = 0 (Git = −1)

indicates units who receive the treatment after (before) time t.

Under the SA design, the staggered adoption ATT (SA-ATT) at time t is defined as follows.

τSA(t) = E[Yit(1)− Yit(0) | Git = 1],

which represents the causal effect of the treatment in period t on units with Git = 1, who receive

the treatment at time t. This is a straightforward extension of the standard ATT (equation (1))
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Year
1997 1998 1999 2000 2001 2002 2003

State 1 0 0 1 1 1 1 1

State 2 0 0 0 0 1 1 1

State 3 0 0 0 0 0 0 0

Figure 5: Example of the Staggered Adoption Design. Note: We use gray cells of “1” to
denote the treated observation and use white cells of “0” to denote the control observation.

in the basic DID setting. Researchers might also be interested in the time-average staggered

adoption ATT (time-average SA-ATT).

τSA =
∑
t∈T

πtτ
SA(t),

where T represents a set of the time periods for which researchers want to estimate the ATT.

For example, if a researcher is interested in estimating the ATT for the entire sample periods,

one can take T = {1, . . . , T}. The SA-ATT in period t, τSA(t), is weighted by the proportion

of units who receive the treatment at time t: πt =
∑n

i=1 1{Ai = t}/
∑n

i=1 1{Ai ∈ T }.

4.2 Double DID for Staggered Adoption Design

Under what assumptions can we identify the SA-ATT and the time-average SA-ATT? Here, we

first extend the standard DID estimator under the parallel trends assumption and the sequen-

tial DID estimator under the parallel trends-in-trends assumption to the SA design. Formally,

we define the standard DID estimator for the SA-ATT at time t as

τ̂SA
DID(t) =

(∑
i : Git=1 Yit

n1t
−
∑

i : Git=1 Yi,t−1

n1,t−1

)
−
(∑

i : Git=0 Yit

n0t
−
∑

i : Git=0 Yi,t−1

n0,t−1

)
,

which is consistent for the SA-ATT under the following parallel trends assumption in period t

under the SA design:

E[Yit(0) | Git = 1]− E[Yi,t−1(0) | Git = 1] = E[Yit(0) | Git = 0]− E[Yi,t−1(0) | Git = 0].

Similarly, we can define the sequential DID estimator for the SA-ATT at time t as

τ̂SA
s-DID(t) =

{(∑
i : Git=1 Yit

n1t
−
∑

i : Git=1 Yi,t−1

n1,t−1

)
−
(∑

i : Git=0 Yit

n0t
−
∑

i : Git=0 Yi,t−1

n0,t−1

)}
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−
{(∑

i : Git=1 Yi,t−1

n1,t−1
−
∑

i : Git=1 Yi,t−2

n1,t−2

)
−
(∑

i : Git=0 Yi,t−1

n0,t−1
−
∑

i : Git=0 Yi,t−2

n0,t−2

)}
,

which is consistent for the SA-ATT under the following parallel trends-in-trends assumption

in period t under the SA design:

{E[Yit(0) | Git = 1]− E[Yit(0) | Git = 0]} − {E[Yi,t−1(0) | Git = 1]− E[Yi,t−1(0) | Git = 0]}

= {E[Yi,t−1(0) | Git = 1]− E[Yi,t−1(0) | Git = 0]} − {E[Yi,t−2(0) | Git = 1]− E[Yi,t−2(0) | Git = 0]}.

Finally, combining the standard and sequential DID estimators, we can extend the double

DID to the SA design as follows.

τ̂SA
d-DID(t) = argmin

τSA(t)

(
τSA(t)− τ̂SA

DID(t)

τSA(t)− τ̂SA
s-DID(t)

)>
W(t)

(
τSA(t)− τ̂SA

DID(t)

τSA(t)− τ̂SA
s-DID(t)

)

where W(t) is a weight matrix. Under the SA design, similar to the basic design, the standard

DID and sequential DID estimators are special cases of our proposed double DID estimator

with specific choices of the weight matrix. As in Section 3.1, we can estimate the optimal

weight matrix Ŵ(t) (details below), and thus, users do not need to choose it manually.

Like the basic double DID estimator in Section 3.1, the double DID for the SA design also

consists of two steps. The first step is to assess the underlying assumptions using the standard

DID for the SA design with two points {t − 1, t − 2} for units that are not yet treated at

time t − 1, that is, {i : Git ≥ 0}. This is a generalization of the pre-treatment-trends test

in the basic DID setup (Section 2.2). The second step is to estimate the SA-ATT at time t.

When only the parallel trends-in-trends assumption is plausible, we choose weight matrix W(t)

where W(t)11 = W(t)12 = W(t)21 = 0 and W(t)22 = 1, which converges to the sequential

DID under the SA design. When the extended parallel trends assumption is plausible, we use

the optimal weight matrix defined as Ŵ(t) = V̂ar(τ̂SA
(1:2)(t))

−1 where Var(·) is the variance-

covariance matrix and τ̂SA
(1:2)(t) = (τ̂SA

DID(t), τ̂
SA
s-DID(t))

>. This optimal weight matrix provides us

with the most efficient estimator (i.e., the smallest standard error). We provide further details

on the implementation in Appendix E.3.

To estimate the time-average SA-DID, we extend the double DID as follows.

τ̂
SA
d-DID = argmin

τSA

(
τSA − τ̂SA

DID

τSA − τ̂SA
s-DID

)>
W

(
τSA − τ̂SA

DID

τSA − τ̂SA
s-DID

)

where τ̂
SA
DID and τ̂

SA
s-DID are time-averages of the DID and sequential DID estimators,

τ̂
SA
DID =

∑
t∈T

πtτ̂
SA
DID(t), and τ̂

SA
s-DID =

∑
t∈T

πtτ̂
SA
s-DID(t).
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The optimal weight matrix Ŵ is equal to V̂ar(τ̂
SA
(1:2))

−1 where τ̂
SA
(1:2) = (τ̂

SA
DID, τ̂

SA
s-DID)

>.

5 Concluding Remarks

While the most basic form of the DID only requires two time periods — one before and the

other after treatment assignment, researchers can often collect data from several additional pre-

treatment periods in a wide range of applications. In this article, we show that such multiple

pre-treatment periods can help improve the basic DID design and the staggered adoption

design in three ways: (1) assessing underlying assumptions about parallel trends, (2) improving

estimation accuracy, and (3) enabling more flexible DID estimators. We use the potential

outcomes framework to clarify assumptions required to enjoy each benefit.

We then propose a simple method, the double DID, to combine all three benefits within

the GMM framework. Importantly, the double DID contains the popular two-way fixed effects

regression and nonparametric DID estimators as special cases, and it uses the GMM to further

improve with respect to identification and estimation accuracy. Finally, we generalize the

double DID estimator to the staggered adoption design where the timing of the treatment

assignment can vary across units.
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