Adjusting for Unmeasured Confounding in Marginal
Structural Models with Propensity-Score Fixed Effects

Matthew Blackwell  Soichiro Yamauchi
Harvard University

Applied Statistics Workshop
February 17, 2021

1116



Motivation

Estimating effects of time-varying treatments
e Many applications in epidemiology, sociology, and political science, etc
e Presence of time-varying confounders

Marginal structural model adjusts for time-varying confounders
e Flexibly adjusts for potentially post-treatment confounders
e Models treatment history ~» Complex causal quantities

Presence of unmeasured confounders in observational studies
e MSM assumes away unmeasured confounding ~+ Biased causal estimates

Propose a method based on propensity score fixed effect
e Estimate propensity score with unit fixed effects
~» Accounts for unmeasured time-invariant confounder
e Consider an asymptotic regime where n and T grows
~» Address the incidental parameter problem

Simulation evidence to demonstrate finite sample performances
Application to the effect of negative ads on electoral outcomes in the US
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The Impact of Negative Ads in the Election Cycle
Effect of negative ads on the vote share (Blackwell, 2013)

Binary treatment (negative/positive) sequence for 8 ~ 40 weeks
Outcome is observed only after the election

Original DAG without unobserved confounder

negative; negative, vote share

poll;

DAG with unobserved time-invariant confounder

poll, —\

negative, negative, vote share

~ District characteristics, candidate characteristics, etc.

poll;
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Contributions

Causal inference with time-varying treatments

Linear fixed effect model addresses time-invariant unobserved confounders
e Assumes either past treatments do not directly affect the current outcome, or
treatment is unaffected by time-varying confounders (Imai and Kim, 2019; Sobel,
2012)
~» Rule out dynamical aspect of time-varying treatments

Marginal structural model allows for complex dependences
e Sequential ignorability assumption (Robins, 1999)
~» Need to assume away unobserved confounders

Propose IPTW estimator based on propensity score fixed effects
e Includes fixed effects in the propensity score estimation
~ Allows for unobserved time-invariant confounder
e Estimated weights are used in the marginal structural model
~» Allows for complex dependences between treatments and the outcome
e Address the incidental parameter problem (# params. grows with n) with a
large-T approximation (Hahn and Newey, 2004; Fernandez-Val and Weidner, 2018)
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Unit-specific Randomized Experiment: Setup
Setup
e Binary treatment: Dy fort =1,...,Tandi=1,...,n
e Outcome is observed at the end of the experiment: Y;
e Consider estimating the effect of the final treatment: Y;(dr)
Assume that the treatment is randomized within an individual

]P)(D,‘t =1 | a,—) = 7T(C¥i) =T

e Assume conditional independence: Y;(dr) 1L Dir | o

Infeasible Estimator
e Consider 7y = E[Y;(1)] as our quantity of interest (for now)
o If we knew the true propensity score 7; for all i, we could estimate 7, via
~ >ory DirYi/mi
"= <n — 5
Zi:l Dir/mi

e Under some regularity conditions, 71 is asymptotically normal
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Unit-specific Randomized Experiment: Result

Estimator with Estimated Propensity Score
e Consider the following feasible IPTW estimator

s > or, DirYi/7i

LT Y De/R

where 7, = ZtT:1 D;/T
e 7;is an incidental parameter ~» Nonlinearly enters the estimator

e T3 is not consistent under fixed-T regime (incidental parameter problem)

Proposed Strategy
e Consider a large-T regime: Asn, T — oo withn/T — pwhere 0 < p < 0o
e Then, 73 is consistent and asymptotically normally distributed

V(7 — 1) 3 N(0,02)
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Unit-specific Randomized Experiment: Analysis

How do we avoid the incidental parameter problem?

We can re-express the feasible estimator as a solution to the following

fZD‘T (Yi—7)=0

i=1 %,_/
= Ul(‘”l;‘ﬂ)

Asn, T — oo we have

V(T —m) = P Z Ui(mi, 1) — DA Z m T Ui(mi, 1) + (high-order)

Term (1) Term (I1)

Term (1) is what we get if we knew the true propensity score
Term (Il) is due to the noise in estimated propensity score
e We show that Term (1) is Op(1/+/T) ~+ Vanishes as T — oo
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Unit-specific Randomized Experiment: Remarks

e Time horizon T grows with the number of units n
~» Reasonable approximation when we have data with large T

e n/T — pensures that the cross-sectional dimension does not dominate T
~»nand T are of similar order (e.g., time-series and cross-sectional data)

~» Value of p affects the finite sample performance

e The estimator is scaled by v/n not by v/nT
~» We make inference on some finite number of outcomes in time dimension
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Marginal Structural Models

e We generalize the result in previous slides to a general setting

e In addition to treatments, we have time-varying covariates X;;

e Treatment effect defined as contrast between two treatment histories
T(gkv dl) = E[Y‘(Qk) - Y"(Qi)]v gk = (dT—kv °00g dT)

e In our example: E[Yi(negative,, negative,) — Yj(negative,, positive,)]
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Assumptions

Relax assumptions regularly employed in MSM
Unit-specific sequential ignorability: Treatment is independent of
Yi(dy_,) = Yi(Dir—k—1, d,) conditional on information up to time t and unit
fixed effect
Yi(dr_) AL Dit | Xit, Dit—1, i

~» Allow for unobserved time-invariant confounder via «;
Propensity score model: Parametric model of treatment assignment
P(Dit = 1| Vi = v, ) = F(ai + B v) = (s, B)
where V;t = (Xit, Dj ¢—1) is the history up to time t
Marginal structural model: For d, = (dr_x, - . . , dr) with fixed k,
E[Yi(d,)] = g(dy; )
~» Reduce dimensionality of Y;(d,)

7(d,, di) = 8(d; ) — 8(dii )
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The Proposed Estimator
Propensity score: Prob. of observing a particular treatment history d,

k

Wi(gk; «j, ﬁ) = H {’/Ti,Tfj(ah ﬁ)}di,r—j{l . Wi,Tfj(ai, 6)}170’,‘,14

j=0
Estimate propensity score via MLE ~» Logistic regression with unit indicators

n T T
. 1 . . 1
B = argmax > > (B, a(B), ai= argmax - ?:1 li(B, )

i=1 t=1

Estimate parameters in MSM by solving the estimating equation:

. [h(Di)(Y,- —3(D; ‘y))] _
W,(d ;aia/@)

~» Weighted least square estimator with 1/W;(d,) as weights
Theorem 1: Under regularity conditions, we have

V(7 =) 5 N(0,V)

asn, T — oo withn/T — p.
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Simulation Study
Setup
e Number of units: n € {200, 500, 1000, 3000}
e Unit-time ratio: n/T = p € {5,50}
e Treatment assignment depends on FE, past-treatment & covariates

Dit ~ Bern(expit(c; + ¢Dj—1 + BTxit))

Unobserved heterogeneity: a; ~ Uniform[—a,a] witha € {1,2}
Outcome model:

T-3
Yi=ai + TeDir + 7c Z Dit +7T7(i +ea, a~N(01)
contemporaneous effect St

cumulative effect

Estimators
e Weighted least square under correct specification

@ -3

N 2

(7, 7c) = argmin E W,-{Y,- — a — TeDir — ¢ E Dit}
i=1 t=T—1

e (1) FE-PS, (2) PS, and (3) true PS
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Empirical Study

Marginal structural model

Treatment: Democratic candidate going negative (D;; = 1) or not (D;; = 0)

Effect of additional negative ads in the last 5 weeks
4
EV(@)] =7 +7 3 dri
k=0

e Two outcomes:

1. Dem. two-party vote share (electoral outcome)
2. Democrat / Republican turnout (mobilization effect)

Focus on US Senate & Gubernatorial elections between 2000 and 2008

e n = 201 unique races

Covariates
e Time-varying covariate: Opinion polls, time-trend, opponent’s ad, etc

e Time-invariant baseline covariates: Predicted competitiveness of the race,
incumbency status, measures of challenger quality, etc.
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Estimate

Results

Dem. % of Two-Party Vote Democrat Turnout % Republican Turnout %

Effect of negativity at various weeks out
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Naive
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Concluding Remarks

e Causal inference with time-varying treatments

e Dynamical relationships between treatments and the outcome
e Presence of time-varying confounders

e Existing methods either assumes away some dynamics (linear FE) or
unmeasured confounding (MSM)

e Propose a method to incorporate fixed effect in propensity score estimation

e Accounts for time-invariant unmeasured confounders
e Consider a large-T approximation to address incidental parameter problem
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Appendix
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Details of Weighting Estimator

e Stabilized weights: Let Ty = P(D = 1| Dj+—1), and

k — Di1—j = 1-Dj 1—j

W B (77,’7Tj> i,T )<1 _ 7Ti7Tj> 1,T—j
P = | I = =
— o \Ti,7—j 1-Tir

e Trimming weights: When MLE is unbounded for &;, we could either replace
a; with a constant, or drop the observations
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