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e Difference-in-differences for causal inference in observational studies
e Adjust for the time-invariant confounders by utilizing the past outcome
e Key identification assumption: parallel trends assumption
~» Identical trends across the treated & the control without the treatment

~~ Relies on the differences between two potential outcomes: Linearity

e In social science, many outcomes are measured on an ordinal scale (e.g.,
survey questions) ~» “differences” are not well defined

e Problems in common practices:

e Treat as a continuous variable ~» Difficult to interpret + linearity
e Dichotomize the outcome ~» Multiple distinct parallel trends assumptions
e Ordered probit/logit ~» Identification assumptions are not explicitly stated

e Propose: A latent variable framework for DiD for the ordinal outcomes

e Application: Revisit a recent debate on the relationship between the mass
shootings and the attitude toward gun control
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Difference-in-Differences for Ordinal Outcomes

Contributions: New identification strategy & diagnostic tool
e Introduce a latent variable framework
e Extend the latent utility representation of the standard probit/logit

e Apply the assumption by Athey & Imbens (2006) on the latent variable scale
e Assumes temporal changes in quantiles are identical across two groups
~~+ Avoid imposing the linearity assumption in the standard DiD

e Derive a diagnostic with one additional pre-treatment period
e Analogous to the pre-treatment trend check in the standard DiD

~» Equivalence based test to assess the plausibility of the assumption
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DiD for Ordinal Outcomes: Setup

Observed outcome: Yj; € {0,...,J—1}fori=1,...,nand t € {0, 1}
Binary treatment: D; € {0,1}
Potential outcome: Y;(d) for d € {0, 1}

Estimand: Differences in choice probabilities for the treated
g' = Pr(Y,-1(1) :j | D,' = 1) = PF(Y“(O) :j ‘ Di = 1)

Example: Difference in prob. of choosing more-strict under two conditions
Pr(Yi(1) =j | D; = 1) is observed from the data: Pr(Y;; =j | D; = 1)
Need to identify Pr(Y;1(0) = j | D; = 1) with additional assumptions
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Latent Variable Formulation

Ordinal outcome: Yg4 ~ Yit(0) | D; =d
~» Yy, is the counterfactual outcome
Latent “utility” generating the ordinal outcome: Y}, € R

Index model: Mapping Yy, to Yg;

0 if K1 Z Y;t Z Ko
Yar = J it Kjps > Vg > K
J—1 if Y] Z Y;t Z KRj—1

Location-scale family: Imposing distribution on Y,

Yi~ g + og U
dt Mt t

location scale

where U belongs to a parametric family (e.g., normal, logistic, t-dist.)
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e Proposition:

Fr(Frzr (V) = Fy;, (Fl(v)) Vv e [0,1]
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the distribution of the counterfactual latent variable given by
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e When variances are constant o4 = o, recovers the usual parallel trends form

H11 — H10 = Ho1 — Moo
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Estimation

Impose a distribution on U (base distribution): U ~ J\/(O, 1)
~» Estimate parameters by MLE (e.g., variant of the ordered probit)

Plug-in estimator for the counter-factual distribution

~ ~ ﬁOl - ﬁOO ~ 610801
H11 & flio + —=<—=—, and 011 + —=
000/010 000
Obtain causal estimates: ¢ = ((1,-..,(-1) "

G = o D2 0¥ =1}~ {O (s = ue) Gur) — (s — )20}

= Pr(vu(0)=j|Di=1)

= Pr(Yu(1)=j|Di=1)

Obtain variance estimates by the block-bootstrap
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Two-wave (2010-12) panel from Cooperative Congressional Election Study:

In general, do you feel that laws covering the sale of firearms
should be made more strict, less strict, or kept as they are?

(0) Less Strict; (1) Kept As They Are; (2) More Strict.

Respondents are “treated” if living within 100 miles from the shootings

e 16 mass-shootings coded at the zip-code level
e Approx. 30% of respondents (out of 16620) are treated

Subgroups
e Partisanship: 3-point scale party self-identification
e Prior-exposure: Living in areas with mass shootings in the past 10 years

Previous studies used:

e Ordinal logit with RE (NH19 and HN19)
e Linear two-way FE (BS19)
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Difference in probabilities

Results
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Difference in probabilities

Results
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Difference in probabilities

Results

e Estimate ; = Pr(Y(1) =j | D; = 1) — Pr(Yi(0) =j | D; = 1)
e Block-bootstrap at the zip-code level

u‘_.v No Prior Exposure Prior Exposure

o n Democrat Republican Independent Democrat Republican Independent
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11]15



Assessing the Distributional Parallel Trends Assumption

e Additional pre-treatment time-periods ~» Assessment of the distributional PT

12]15



Assessing the Distributional Parallel Trends Assumption

e Additional pre-treatment time-periods ~» Assessment of the distributional PT
e If the assumption holds for the pre-treatment, we have g (v) — go(v) =0

da(v) = FYJO(F;;:(V))

12]15



Assessing the Distributional Parallel Trends Assumption

e Additional pre-treatment time-periods ~» Assessment of the distributional PT
e If the assumption holds for the pre-treatment, we have g (v) — go(v) =0

da(v) = FYJO(FZ*;(V))

e Test the following non-equivalence null (i.e., Hy: Assumption does not hold)

Ho: max |G1(v) —do(v)| >3 vs Hi: max |di(v) — Go(v)] <6
ve(o,1] velo,1]

12]15



Assessing the Distributional Parallel Trends Assumption

e Additional pre-treatment time-periods ~» Assessment of the distributional PT
e If the assumption holds for the pre-treatment, we have g;(v) — do(v) =0

da(v) = FYJO(FZ*;(V))

e Test the following non-equivalence null (i.e., Hy: Assumption does not hold)

Ho: max |G1(v) —do(v)| >3 vs Hi: max |di(v) — Go(v)] <6
ve(o,1] velo,1]

~» Two one-sided tests (TOST)

Hi @ max {Gi(v) —Go(v)} > 6 and Hy: max {Gi(v) — Go(v)} < —6
velo,1] ve(o,1]

12]15



Assessing the Distributional Parallel Trends Assumption

e Additional pre-treatment time-periods ~» Assessment of the distributional PT
e If the assumption holds for the pre-treatment, we have g;(v) — do(v) =0

da(v) = FYQ‘O(FZ*,:(V))

e Test the following non-equivalence null (i.e., Hy: Assumption does not hold)

Ho: max |G1(v) —do(v)| >3 vs Hi: max |di(v) — Go(v)] <6
velo,1] velo,1]

~» Two one-sided tests (TOST)

) )

Hi: max{Gi(v) —do(v)} > 6 and Hy: max{Gi(v) — do(v)} < =6
ve(o,1] ve(o,1]

e Construct one-sided point-wise Cls: U; _,(v) and L;_,(v)

reject: Hf at alevel <= max U;_o(v) < &
ve(o,1]

~» We reject Ho if we reject both Hi” and Hy
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e Some respondents of CCES 2010-12 panel are reinterviewed in 2014
e Focus on 2817 respondents who
e Did not have the “prior exposure” as of 2010
e Were not treated between 2010 and 2012
e Approx. 25% of them (667) are newly treated between 2012 and 2014
e 28 shootings
e Assess the distributional parallel trends assumption using 2010-12
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Using Three-wave Panel to Assess the Assumption

e Some respondents of CCES 2010-12 panel are reinterviewed in 2014
e Focus on 2817 respondents who
e Did not have the “prior exposure” as of 2010
e Were not treated between 2010 and 2012
e Approx. 25% of them (667) are newly treated between 2012 and 2014
e 28 shootings
e Assess the distributional parallel trends assumption using 2010-12

Test Statistic Effect in 2014
(Pre-Treatment Outcome) (CCES 10-12-14 Subsamples)
o
fnan = 0.021 27
equivalence threshold = 0.054 No prior exposure & Untreated in 2012
e} n= 2812
o -
& 1%
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2 = o
=3 -0 E ©
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Concluding Remarks

Difference-in-differences is widely used in social science research
Linearity assumption in DID is inappropriate for ordinal outcomes
Propose a latent variable framework to address the issue

Revisit the recent debate on the relationship between the mass shootings
and the attitudes toward gun control:
e Find that effects are concentrated among Democrats who do not have “prior
exposure” to shootings and among Independents
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Treating as Continuous Outcome

e Consider a cross-sectional setting:
G = Pr(vi(1) =J) — Pr(vi(0) =)

e Rescale the outcome: Y; = Y;/(J — 1)
e The difference-in-means estiamtor on 7; can be written as

J
?DIM = Z(J 71.)715

=1

where . .
~ 1 1
Tom=— Y DYi— = (1-Dy)Y;
M3 Mo

~» Weighted average of E, with weights are 1/(J — j)
e This can potentially cancel out the effects: E.g., 61 > 0and 62 <0
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Invariance of Causal Effect to Choice of Cutoffs

e Proposition: Suppose Yj; € J = {0,1,2} and U ~ N(0, 1). Let k and K’ be
the different sets of cutoffs. Then, for allj € 7.

e Intuition:
(1) Assumption is imposed on the quantile scale (i.e., distributional PT)

~» counterfactual distribution is identified as long as quantile info. is
preserved

(2) Changing cutoffs affect mean & scale ~» transform the latent variables
(3) But quantile information is preserved, Pr(Y* < k) = Pr(¥* < &)

/ 2 o((y* — f100)/000)dy™ = Pr(Yoo = 1) = / 2 O((Y" — 1100)/ 700)dY"
K1 — K1

observed prob.

~» uniquely recovers the counterfactual distribution Y7,
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Identification of Latent Variables

e Suppose that the cutoffs are fixed at k1 and k; for Yg = j € {0, 1,2}. Then,

gt and oge in Y, ~ pge + 0g:U are uniquely identified from the observed
probability distribution.

e Proof: Suppose that U has the density fy(u). Then, we can form a non-linear
system of equations

Pr(Yg = 0) = /_ : fu((y" — pa)/oa)dy”

Pr(Yg =2) = /00 fu((y* — pat)/oar)dy”

which are sufficient for estimating x and o.
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Alternative Formula of Identification

e Suppose Yq: =j € {0,1,2}. Let vq = Fo1(x1) and vo = Foy(k2) where K is a
set of fixed cutoffs.

e Under the assumptions, we identify 11, and o4 by the following system of
non-linear equations:

Fio'(v1)
Clo(Vl) = / fu((Y* - /l11)/011)dy*

— 00

Fio'(v2)
ao(v2) = / fu((y™ — pa1)/o11)dy™.

o0

5116



Constructing Confidence Intervals for Testing

o Lett(v) = g1(v) — do(v)
e Point-wise upper and lower (1 — «) level confidence intervals:

Us_o(v) = E(v) + ©7Y(1 — a)y/Var(¥(v))/n
L o(v) = t(v) — d71(1 — a)y/Var((v))/n
e Proposition

Pr( max t(v) < max U1a(v’)> >1—a
ve(o,1] v/ €[0,1]

Pr( min t(v) > min fla(v’)) >1—a
velo,1] v/ €[0,1]
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Choosing Delta

e Value of ¢ reflect the admissible level of “non equivalence”
~» Larger values of § correspond to lenient thresholds
e Calibrate ¢ based on the rejection threshold for the KS test

3 = min { /“ogla) /2, "L, 1

and take o« = 0.05

e Can report the equivalence Cl: minimum possible value of ¢ at « level

Omin ,n = max {‘01704(V)|, |/L\1*04(v)‘}

velo,1]

~» Equivalence Cl is given by [—dmin,ns Omin.n]
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Additional Empirical Analysis
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Treating as a Continuous Outcome

Average of ‘Normalized' Outcome

0.60

0.55

Treat as Continuous Outcome

Treatment Group

°

Control Group

2010 2012 2014
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Difference in probabilities
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Three-wave Sub-sample: Effect in 2012
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Cumulative Effect: Two-wave Panel

Aj = PI’(Y,'l(l) Z} | D,' = 1) — PI’(Y,'l(O) ZJ | D,' = 1)
Effect in 2012 (CCES 2010-12)

Full Sample No Prior Exposure Prior Exposure Democrat Republican Independent
n= 16553 n= 7123 n= 9430 n= 5526 n= 5126 n= 4996

§ b

—— Dy = Pr(Y(1) = more strict | D=1) — Pr(Y(0) = more strict | D=1)
—&— N = Pr(Y(1) >= kept as they are | D=1) - Pr(Y(0) >= kept as they are | D=1)
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Probabilities

Bound Results: Two-wave Panel

T = PI’(Y;l(l) Z Y,'l(O) ‘ D,' = 1), and n= PI’(Y,'l(l) > Y,'l(O) | D,' = 1)

Effect in 2012 (CCES 2010-12)

Full Sample No Prior Exposure Prior Exposure Democrat Republican Independent
n= 16553 n= 7123 n= 9430 n= 5526 n= 5126 n= 4996

“ —

Q4 I

o

© |

o

<

o

o

) J

o

— T1=Pr(Y(1)>=Y(0)|D=1) —— n=Pr(Y(1)>Y(0) | D=1)

15|16



Definition of Mass Shootings

Cases involving the following:
1. Firearms as the primary weapon used,
2. Attacks on non-family members of the general public

3. Attacks in which at least three or more individuals were injured or killed
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