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Di@erence-in-Di@erences Design in Observaࢢonal Studies
• Di@erence-in-di@erences for causal inference in observaࢢonal studies

• Adjust for the me-invariantࢢ confounders by uࢢlizing the past outcome
• Key idenࢢCcaࢢon assumpࢢon: parallel trends assumpࢢon

; Idenࢢcal trends across the treated & the control without the treatment

; Relies on the di@erences between two potenࢢal outcomes: Linearity

• In social science, many outcomes are measured on an ordinal scale (e.g.,
survey quesࢢons); “di@erences” are not well deCned

• Problems in common pracࢢces:

• Treat as a conࢢnuous variable; DiLcult to interpret + linearity
• Dichotomize the outcome;Mulࢡple disࢢnct parallel trends assumpࢢons
• Ordered probit/logit; IdenࢢCcaࢢon assumpࢢons are not explicitly stated

• Propose: A latent variable framework for DiD for the ordinal outcomes
• Applicaࢢon: Revisit a recent debate on the relaࢢonship between the mass
shooࢢngs and the aࢰtude toward gun control
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Di@erence-in-Di@erences for Ordinal Outcomes

Contribuࢢons: New idenࢢCcaࢢon strategy & diagnosࢢc tool

• Introduce a latent variable framework
• Extend the latent uࢢlity representaࢢon of the standard probit/logit

• Apply the assumpࢢon by Athey & Imbens (2006) on the latent variable scale
• Assumes temporal changes in quanࢢles are idenࢢcal across two groups
; Avoid imposing the linearity assumpࢢon in the standard DiD

• Derive a diagnosࢢc with one addiࢢonal pre-treatment period
• Analogous to the pre-treatment trend check in the standard DiD
; Equivalence based test to assess the plausibility of the assumpࢢon
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Mass Shooࢢngs and Aࢰtudes toward Gun Control

• Recent debate on the topic (Barney & Scha@ner, 2019; Hartman& Newman,
2019; Newman & Hartman, 2019)

• Proximity to the shooࢢngs as a treatment (dichotomized by 100 miles)
• Ordinal survey outcome: less-strict, keep-the-same and more-strict

In general, do you feel that laws covering the sale of firearms

should be made more strict, less strict, or kept as they are?

(0) Less Strict; (1) Kept As They Are; (2) More Strict.
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DiD for Ordinal Outcomes: Setup

• Observed outcome: Yit ∈ {0, . . . , J− 1} for i = 1, . . . , n and t ∈ {0, 1}

• Binary treatment: Di ∈ {0, 1}
• Potenࢢal outcome: Yit(d) for d ∈ {0, 1}
• Esࢢmand: Di@erences in choice probabiliࢢes for the treated

ζj =

• Example: Di@erence in prob. of choosing more-strict under two condiࢢons
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Latent Variable Formulaࢢon

• Ordinal outcome: Ydt ∼ Yit(0) | Di = d

; Y11 is the counterfactual outcome
• Latent “uࢢlity” generaࢢng the ordinal outcome: Y∗dt ∈ R
• Index model: Mapping Y∗dt to Ydt

Ydt =


0 if κ1 ≥ Y∗dt ≥ κ0

j if κj+1 ≥ Y∗dt ≥ κj

J− 1 if κJ ≥ Y∗dt ≥ κJ−1

• Locaࢢon-scale family: Imposing distribuࢢon on Y∗dt

Y∗dt ∼ µdt︸︷︷︸
locaࢢon

+ σdt︸︷︷︸
scale

U

where U belongs to a parametric family (e.g., normal, logisࢢc, t-dist.)
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Main Result

• Distribuࢢonal parallel-trends assumpࢢon (Athey & Imbens 2006)

FY∗00(F
−1
Y∗01

(v)) = FY∗10(F
−1
Y∗11

(v)) ∀v ∈ [0, 1]

• Proposiࢢon: the distribuࢢon of the counterfactual latent variable given by

µ11 = µ10 +
µ01 − µ00
σ00/σ10

, and σ11 =
σ10σ01
σ00

• When variances are constant σdt = σ, recovers the usual parallel trends form

µ11 − µ10 = µ01 − µ00
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Esࢢmaࢢon

• Impose a distribuࢢon on U (base distribuࢢon): U ∼ N (0, 1)

; Esࢢmate parameters by MLE (e.g., variant of the ordered probit)
• Plug-in esࢢmator for the counter-factual distribuࢢon

µ̂11 ← µ̂10 +
µ̂01 − µ̂00
σ̂00/σ̂10

, and σ̂11 ←
σ̂10σ̂01
σ̂00

• Obtain causal esࢢmates: ζ̂ = (ζ̂1, . . . , ζ̂J−1)
⊤

ζ̂j =

• Obtain variance esࢢmates by the block-bootstrap

Cuto@ Mean-Variance
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Revisiࢢng the Empirical Applicaࢢon
• Two-wave (2010-12) panel from Cooperaࢢve Congressional Elecࢢon Study:

In general, do you feel that laws covering the sale of firearms

should be made more strict, less strict, or kept as they are?

(0) Less Strict; (1) Kept As They Are; (2) More Strict.

• Respondents are “treated” if living within 100 miles from the shooࢢngs

• 16 mass-shooࢢngs coded at the zip-code level
• Approx. 30% of respondents (out of 16620) are treated

• Subgroups

• Partisanship: 3-point scale party self-idenࢢCcaࢢon
• Prior-exposure: Living in areas with mass shooࢢngs in the past 10 years

• Previous studies used:

• Ordinal logit with RE (NH19 and HN19)
• Linear two-way FE (BS19)

DeCnࢢon of Mass Shooࢢngs
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Distribuࢢon of Outcome in 2010 & 2012
0: less-strict; 1: keep-the-same; 2: more-strict
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Results
• Esࢢmate ζj = Pr(Yi1(1) = j | Di = 1)− Pr(Yi1(0) = j | Di = 1)
• Block-bootstrap at the zip-code level
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Assessing the Distribuࢢonal Parallel Trends Assumpࢢon
• Addiࢢonal pre-treatment ;me-periodsࢢ Assessment of the distribuࢢonal PT

• If the assumpࢢon holds for the pre-treatment, we have q̃1(v)− q̃0(v) = 0

q̃d(v) = FY∗d0(F
−1
Y∗d1

(v))

• Test the following non-equivalence null (i.e., H0: Assumpࢢon does not hold)

H0 : max
v∈[0,1]

|q̃1(v)− q̃0(v)| > δ vs H1 : max
v∈[0,1]

|q̃1(v)− q̃0(v)| ≤ δ

; Two one-sided tests (TOST)

H+
0 : max

v∈[0,1]
{q̃1(v)− q̃0(v)} > δ and H−

0 : max
v∈[0,1]

{q̃1(v)− q̃0(v)} < −δ

• Construct one-sided point-wise CIs: Û1−α(v) and L̂1−α(v)

reject : H+
0 at α level ⇐⇒ max

v∈[0,1]
Û1−α(v) < δ

;We reject H0 if we reject both H+
0 and H

−
0

Choose delta
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reject : H+
0 at α level ⇐⇒ max

v∈[0,1]
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Using Three-wave Panel to Assess the Assumpࢢon

• Some respondents of CCES 2010–12 panel are reinterviewed in 2014

• Focus on 2817 respondents who

• Did not have the “prior exposure” as of 2010
• Were not treated between 2010 and 2012

• Approx. 25% of them (667) are newly treated between 2012 and 2014

• 28 shooࢢngs

• Assess the distribuࢢonal parallel trends assumpࢢon using 2010–12
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Concluding Remarks

• Di@erence-in-di@erences is widely used in social science research

• Linearity assumpࢢon in DID is inappropriate for ordinal outcomes

• Propose a latent variable framework to address the issue

• Revisit the recent debate on the relaࢢonship between the mass shooࢢngs
and the aࢰtudes toward gun control:

• Find that e@ects are concentrated among Democrats who do not have “prior
exposure” to shooࢢngs and among Independents
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Treaࢢng as Conࢢnuous Outcome

• Consider a cross-secࢢonal seࢰng:

ζj = Pr(Yi(1) = j)− Pr(Yi(0) = j)

• Rescale the outcome: Ỹi = Yi/(J− 1)
• The di@erence-in-means esࢢamtor on Ỹi can be wri�en as

τ̂DiM =
J∑

j=1

(J− j)−1ζ̂j

where

τ̂DiM =
1
n1

n∑
i=1

DiYi −
1
n0

n∑
i=1

(1− Di)Yi

;Weighted average of ζ̂j with weights are 1/(J− j)

• This can potenࢢally cancel out the e@ects: E.g., ζ̂1 > 0 and ζ̂2 < 0
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Invariance of Causal E@ect to Choice of Cuto@s
• Proposiࢢon: Suppose Yit ∈ J ≡ {0, 1, 2} and U ∼ N (0, 1). Let κ and κ′ be
the di@erent sets of cuto@s. Then, for all j ∈ J .

ζ̂j(κ) = ζ̂j(κ
′)

• Intuiࢢon:
(1) Assumpࢢon is imposed on the quanࢢle scale (i.e., distribuࢢonal PT)
; counterfactual distribuࢢon is idenࢢCed as long as quanࢢle info. is
preserved
(2) Changing cuto@s a@ect mean & scale; transform the latent variables
(3) But quanࢢle informaࢢon is preserved, Pr(Y∗ ≤ κ1) = Pr(Ỹ∗ ≤ κ′

1)∫ κ2

κ1

ϕ((y∗ − µ00)/σ00)dy∗ = Pr(Y00 = 1)︸ ︷︷ ︸
observed prob.

=

∫ κ′
2

κ′
1

ϕ((y∗ − µ′
00)/σ

′
00)dy

∗

; uniquely recovers the counterfactual distribuࢢon Y∗11
Back
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IdenࢢCcaࢢon of Latent Variables

• Suppose that the cuto@s are Cxed at κ1 and κ2 for Ydt = j ∈ {0, 1, 2}. Then,
µdt and σdt in Y∗dt ∼ µdt + σdtU are uniquely idenࢢCed from the observed
probability distribuࢢon.

• Proof: Suppose that U has the density fU(u). Then, we can form a non-linear
system of equaࢢons

Pr(Ydt = 0) =
∫ κ1

−∞
fU((y∗ − µdt)/σdt)dy∗

Pr(Ydt = 2) =
∫ ∞

κ2

fU((y∗ − µdt)/σdt)dy∗

which are suLcient for esࢢmaࢢng µ and σ.
Back
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Alternaࢢve Formula of IdenࢢCcaࢢon

• Suppose Ydt = j ∈ {0, 1, 2}. Let v1 = F01(κ1) and v2 = F01(κ2) where κ is a
set of Cxed cuto@s.

• Under the assumpࢢons, we idenࢢfy µ11 and σ11 by the following system of
non-linear equaࢢons:

q0(v1) =
∫ F−1

10 (v1)

−∞
fU((y∗ − µ11)/σ11)dy∗

q0(v2) =
∫ F−1

10 (v2)

−∞
fU((y∗ − µ11)/σ11)dy∗.
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Construcࢢng ConCdence Intervals for Tesࢢng

• Let t(v) = q̃1(v)− q̃0(v)
• Point-wise upper and lower (1− α) level conCdence intervals:

Û1−α(v) = t̂(v) + Φ−1(1− α)
√
Var(̂t(v))/n

L̂1−α(v) = t̂(v)− Φ−1(1− α)
√
Var(̂t(v))/n

• Proposiࢢon

Pr
(

max
v∈[0,1]

t(v) ≤ max
v′∈[0,1]

Û1−α(v′)
)
≥ 1− α

Pr
(

min
v∈[0,1]

t(v) ≥ min
v′∈[0,1]

L̂1−α(v′)
)
≥ 1− α

Back
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Choosing Delta

• Value of δ reYect the admissible level of “non equivalence”
; Larger values of δ correspond to lenient thresholds

• Calibrate δ based on the rejecࢢon threshold for the KS test

δn = min

{√
− log(α)/2

√
n1 + n0
n1n0

, 1
}

and take α = 0.05
• Can report the equivalence CI: minimum possible value of δ at α level

δmin,n = max
v∈[0,1]

{
|Û1−α(v)|, |̂L1−α(v)|

}
; Equivalence CI is given by [−δmin,n, δmin,n]

Back
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Addiࢢonal Empirical Analysis
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Treaࢢng as a Conࢢnuous Outcome
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Outcome Distribuࢢons by Sub-Group
Distribution of Outcome in 2010
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Distribution of Outcome in 2012
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Party ID based on 7-point Scale Measure
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Di@erent Distance Threshold: 25 Miles
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Di@erent Distance Threshold: 25 Miles
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Three-wave Sub-sample: E@ect in 2012
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Three-wave Sub-sample: E@ect in 2012
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Cumulaࢢve E@ect: Two-wave Panel

∆j = Pr(Yi1(1) ≥ j | Di = 1)− Pr(Yi1(0) ≥ j | Di = 1)
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Bound Results: Two-wave Panel

τ = Pr(Yi1(1) ≥ Yi1(0) | Di = 1), and η = Pr(Yi1(1) > Yi1(0) | Di = 1)
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DeCniࢢon of Mass Shooࢢngs

Cases involving the following:
1. Firearms as the primary weapon used,
2. A�acks on non-family members of the general public
3. A�acks in which at least three or more individuals were injured or killed

Back
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